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Abstract 

New families of highly non-Keplerian orbits can be generated using continuous low-thrust propulsion. 

These include orbits displaced above/below the orbit plane of a conventional Keplerian orbit using out-of-

plane thrust, or inside/outside a Keplerian orbit using radial thrust. For a given non-Keplerian orbit radius, 

displacement distance, and orbit period the required thrust magnitude and direction can be determined an-

alytically, along with the orbit stability properties. 

A key open issue in the analysis of the families of non-Keplerian orbits is the generation of a mapping 

from the non-Keplerian orbit radius, displacement distance and orbit period to a corresponding set of oscu-

lating Keplerian orbital elements. This is of importance both to support the future operational use of non-

Keplerian orbits and to understand the signature of a non-Keplerian orbit as seen in spacecraft tracking data. 

Since families of non-Keplerian orbits are generated using a strong, continuous perturbation, their osculat-

ing Keplerian orbital elements will be time varying, although still periodic. Similarly, the inverse problem 

is also of importance to deduce the non-Keplerian orbit radius, displacement distance, and orbit period from 

observations of Keplerian elements. Once these elements are known, the thrust-induced acceleration mag-

nitude and direction required for the non-Keplerian orbit can also be determined. 

In order to pursue these questions, the key objectives of this work are, therefore, to: (1) map the proper-

ties of families of highly non-Keplerian orbits onto the classical Keplerian elements, (2) generate an inverse 

mapping from Keplerian elements to the properties of the non-Keplerian orbit, and (3) determine the key 

signatures of non-Keplerian orbits in Keplerian element tracking data. These objectives represent a largely 

unexplored aspect of the dynamics of families of non-Keplerian orbits and offer a route towards their future 

operational use.  

This report presents a mapping between the elements of highly non-Keplerian orbits and classical orbital 

elements. Three sets of elements are discussed and mappings are derived in closed, analytical form for both 

the direct and inverse problem. Advantages and drawbacks of the use of each set of elements are discussed. 

A sensitivity analysis is performed on all mappings presented. The spacecraft thrust-induced acceleration 

used to generate families of non-Keplerian orbits is extracted from the inverse mapping from the osculating 

orbital elements. The key signatures of highly non-Keplerian orbits in Keplerian element tracking data are 

determined through a set of representative test cases. 
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1. Highly Non-Keplerian Orbits: Introduction 

In classical Keplerian mechanics, an object of negligible mass orbits around an attractor due to the gravitational 

interaction existing between the two bodies. Celestial mechanics traditionally deals with Keplerian orbits, treating any 

non-Keplerian effect (e.g. solar radiation pressure, atmospheric drag, gravitational asymmetries due to the Earth’s 

oblateness, third-body interaction) as a perturbation to the classical Keplerian orbit. However, a non-Keplerian orbit 

is defined as an orbit in which a perturbative or propulsive acceleration acts in addition to the gravitational attraction 

of the primary body. Following the definition given in McKay et al.,1 a highly non-Keplerian orbit is characterized by 

the magnitude of the average propulsive acceleration over one orbit 
ava  equal or greater than the sum of gravitational 

and centripetal force experienced by the orbiting body U . That is, introducing a parameter   to represent this 

ratio, a highly non-Keplerian orbit is characterized by 1av U   a . For the sake of conciseness, and because 

only Keplerian and highly non-Keplerian orbits are considered in this paper, all the highly non-Keplerian orbits will 

be simply referred to as non-Keplerian orbits (NKOs) in this report. 

New families of NKOs can be generated using continuous low-thrust propulsion.1-4 These include orbits displaced 

above/below the orbit plane of a conventional Keplerian orbit using out-of-plane thrust, or inside/outside a Keplerian 

orbit using radial thrust. For a given NKO radius, displacement distance and orbit period the required thrust magnitude 

and direction can be determined analytically.2 In addition, the linear stability properties of the families of non-Kep-

lerian orbits can be determined and it can be shown that while unstable families of orbits exist (saddle x center eigen-

value spectrum) they are in principle controllable (full rank controllability matrix) using feedback to the thrust direc-

tion and/or modulation of the thrust magnitude.3 Moreover, the nonlinear stability properties of NKOs have also been 

investigated, and the sufficient and necessary conditions for stability of the motion near the equilibria have been ob-

tained.5  

In addition, by terminating the low-thrust perturbation, a Keplerian orbit will result allowing Keplerian and non-

Keplerian orbits to be patched together to generate rich and complex families of composite orbits that have yet to be 

fully explored.6 Potential applications of NKOs include orbits displaced above/below the geostationary ring to increase 

the number of available slots for communications platforms4 and on-orbit inspection by formation-flying above/below 

or inside/outside the orbit of a target spacecraft.7, 8 For example, a displacement distance of 35 km north/south of the 

geostationary ring allows a platform on a displaced highly non-Keplerian orbit to sit above/below the standard 70 km 

station-keeping box of a conventional geostationary platform. Such an orbit would require a thrust of 200 mN for a 

1000 kg spacecraft, which is achievable with a single QinetiQ T6+ thruster.4 

To date, several works have been carried out to study non-Keplerian orbits. As well shown in the survey presented 

by McKay et al.,1 the problem has been considered from several aspects by taking into account different propulsion 

technologies (e.g. impulsive thrust,6 solar electric propulsion,9 solar sail,10, 11 and hybrid SEP/sail4, 12) and different 

dynamical models (e.g. two-body,2, 3 circular restricted three-body,13 elliptical restricted three-body,14 and restricted 

four-body15). Different mission applications are also outlined for non-Keplerian orbits, such as telecommunication,7 

Earth observation,16 planetary science,17 and geoengineering.18 More recently, Wang et al.19, 20 analyzed the relative 

motion between heliocentric displaced NKOs. Describing the motion by means of classical Keplerian elements and 

modified equinoctial elements,21 they provided an analytical solution to the relative-motion problem. 

As discussed above, all prior studies on non-Keplerian orbits have focused on orbit and mission-design. A key 

open issue in the analysis of the families of non-Keplerian orbits is the generation of a mapping from the NKO geom-

etry to a corresponding set of osculating orbital elements. This is of importance both to support the future operational 

use of non-Keplerian orbits and to understand the signature of a non-Keplerian orbit as seen in spacecraft tracking 

data. Since families of NKOs are generated using a strong, continuous perturbation, their osculating orbital elements 

will be time varying, although still periodic. Similarly, the inverse problem is also of importance to deduce the NKO 
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geometry from observations of orbital elements. Once these elements are known, the thrust-induced acceleration mag-

nitude and direction required for the non-Keplerian orbit can also be determined. 

In order to pursue these questions, the key objectives of this study are, therefore, to: 

1. Map the properties of families of highly non-Keplerian orbits onto the classical orbital elements 

2. Generate an inverse mapping from orbital elements to the properties of the non-Keplerian orbit 

3. Determine the key signatures of non-Keplerian orbits in orbital element tracking data 

These objectives represent a largely unexplored aspect of the dynamics of families of non-Keplerian orbits and 

offer a route towards their future operational use. 

The report is divided into two main Sections. Section 2 describes the case of a simplified model, in which the NKO 

orbital plane is always parallel to the equatorial plane. On the other hand, a generalized model with no assumptions 

on the NKO orbital plane is described in Section 3. In the case of the simplified model, the forward mappings from 

NKO geometry to osculating orbital elements are discussed in Section 2.1. The description of the mappings and their 

sensitivity analyses are analytically investigated in Sections 2.1.1 and 2.1.2, respectively, whereas Section 2.1.3 shows 

the numerical test cases taken into account for the study of the mappings. In Section 2.2, the inverse mappings from 

osculating orbital elements to non-Keplerian orbits are discussed together with their sensitivity analyses. The thrust-

induced acceleration needed to maintain the chosen non-Keplerian orbits is discussed in Section 2.3. In the case of the 

generalized model, the analytical description of the forward mappings is investigated in Section 3.1. Sections 3.1.1 

and 3.1.2 provide the analytical derivation of the forward maps by using the classical Keplerian elements and the 

modified equinoctial elements, respectively. Numerical test cases are shown and discussed in Section 3.1.3, whereas 

a summary of the signatures of a spacecraft being forced on a NKO is provided in Section 3.1.4. A study on the 

generalized inverse mapping is given in Section 3.2 which provides an analytical description of all families of NKOs 

that share the same Cartesian state. Lastly, the impact of noise is discussed in Section 3.3. Conclusions and final 

remarks are drawn in Section 4.  
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2. Simplified Model: Orbital Plane Parallel to Equatorial Plane 

Non-Keplerian orbits can be obtained by considering the dynamics of a low-thrust propelled spacecraft in a rotating 

reference frame.2 The angular velocity of rotation of the reference frame  , together with the out-of-plane displace-

ment z  and the radius of the orbit  , are used as free parameters of the problem. Stationary solutions of the equations 

of motion in this rotating reference frame correspond to periodic, displaced, circular orbits with the orbital plane 

parallel to the ˆ ˆX Y  plane when viewed from an inertial reference frame. In this paper, the Earth-Centered Inertial 

frame  ˆ ˆ ˆ, ,X Y Z  is considered. The acceleration needed to generate such stationary solutions can be derived in a 

closed, analytical form.2 The required thrust vector lies in the plane spanned by the radius vector and the axis of 

symmetry, as shown in Figure 1. Therefore, the propulsive acceleration vector can be described, as a function of the 

NKO elements  , ,
T

NKO z  x , by its magnitude a  and pitch angle  , as follows. 

 

   
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2
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  (2.1) 

The term 
3

* r   in Eq. (2.1) is the orbital angular velocity of a Keplerian orbit of radius 2 2r z  . 

Viewed from an inertial reference frame, the orbits generated by the acceleration described in Eq. (2.1) correspond to 

circular orbits displaced above the central body. The angular velocity of the rotation of the reference frame   corre-

sponds to the angular velocity of the circular orbit viewed from an inertial reference frame. 

 

Figure 1. Displaced orbit with thrust-induced acceleration for the simplified model.  

The acceleration defined in Eq. (2.1) is that required to generate stationary solutions in the rotating reference frame 

(i.e. U a ). Therefore, such solutions are characterized by 1   and so are defined as highly non-Keplerian 

orbits. 

Three families of NKOs can be defined based on the value of the angular velocity of the rotating reference frame.2 

Type 1 NKOs are defined as those orbits with the minimum required acceleration. From Eq. (2.1), the requirement of 

minimum acceleration leads to an angular velocity of the rotating reference frame for Type 1 NKOs defined as shown 

in Eq. (2.2). A second family of NKOs is characterized by orbits synchronous with a body on a circular Keplerian 

orbit in the 0z   plane with the same orbit radius. Lastly, a third family of NKOs is defined by setting the orbital 
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period to a fixed value. The angular velocities that characterize the aforementioned three families of NKOs are shown 

in Eq. (2.2). 

 
3 3

Type 1 Type 2 Type 3 0, ,r           (2.2) 

In this Section, the mappings between NKO elements and the osculating orbit are derived in closed, analytical 

form for both the direct and inverse problem. Therefore, the formulation of the spacecraft thrust-induced acceleration 

given in Eq. (2.1) is derived as a function of the osculating orbital elements. 

2.1. Forward Map: Non-Keplerian Orbit to Osculating Orbital Elements 

Three sets of elements are chosen to describe the osculating Keplerian orbits: 
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  (2.3) 

From McInnes,2 the three families of NKO are fully described by the following three elements in an Earth-centered 

cylindrical reference frame. 
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Angular velocity of the spacecraft

z
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Therefore, the Cartesian position vector r  is simply given by 
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and the Cartesian velocity vector v  is 
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Because the NKOs considered are circular, it is worth noting that the radial component of the velocity is always zero, 

as it can be easily verified by computing 0rv   v r . 

The orbital angular momentum h  can be computed by using the aforementioned expressions of position and ve-

locity as 

 

 

 
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The analytical formulation of the three mappings is detailed in Section 2.1.1, whereas the sensitivity analysis per-

formed on the mappings is described in Section 2.1.2. Section 2.1.3 provides numerical test cases. Lastly, the three 

mappings are compared through their advantages and drawbacks in Section 2.1.4.  
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2.1.1. Mappings 

In the following sub-sections, the forward mappings from non-Keplerian orbit to osculating orbital elements are 

derived for the three sets of elements considered.  

2.1.1.1. Classical Keplerian Elements 

Starting from the Cartesian state vector (Eqs. (2.5) – (2.6)), the mapping from NKO elements  ,,
T

z    to oscu-

lating classical Keplerian elements is obtained, as described in Algorithm 4.2 from Reference 22. 

1. Inclination ( i ) 

  
2 2

ˆ ˆarccos arccosi
z





 
   
  

h Z   (2.8) 

 

2. Right Ascension of the Ascending Node ( ) 

The line of the nodes shall be defined in order to find the expression for the right ascension of the ascending node 

(RAAN). The line of the nodes is defined as 
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It is important to note that the line of the nodes is not defined in case of an in-plane orbit (i.e. 0z  ) because 

sgn(0) 0 . Therefore, the line of the nodes, in this case, is arbitrarily chosen to point in the X̂  direction. Therefore, 

the general formulation of the line of the node is 

 

 

 
 

2 3

1

0 if 0
cos

0
ˆ sin

sin sgn( )
0

cos( )sgn( ) otherwise

0

z

z

z

t

t

  





  
  

         
            

  




N   (2.10) 

Defining the four-quadrant inverse tangent as*           1arctan , tan 2 sgn 1 sgnX Y Y X Y X   , the right as-

cension of the ascending node is simply given by Eq. (2.11), in which     * arccos sin sgnt z . 

        *

*

0 if 0

ˆ ˆarctan if cos 0 0 cos 0 0

2 o

ˆ ˆ,

therwise

z

t z t z 



 


            




X YN N   (2.11) 

 

                                                           
* Definition from MATLAB User’s Guide, Ver. R2014b, atan2 – Symbolic four-quadrant inverse tangent. 
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3. Eccentricity ( e ) 

The eccentricity vector is given by 

 ˆ



  

v h
e r   (2.12) 

Using the vector triple product rule and remembering that 0rv  , the expression for the eccentricity vector in Eq. 

(2.12) can be rewritten as 

 

 

 
2 2 2

2 2

cos

sin
1 1v

r z
z

t

t

 
 

 
  

 
    
             

 

e r   (2.13) 

The value of the eccentricity is, therefore, given by the norm of the eccentricity vector, as 

 

2 2 2 2z
e

   







  (2.14) 

Note that a circular planar Keplerian orbit is characterized by 
2 3   , which satisfies the zero-eccentricity 

condition. However, the eccentricity vector is not defined in this case and this is an issue in the following computation 

of the true anomaly. Therefore, the eccentricity unit vector, in this case, is arbitrarily chosen to point in the X̂  direc-

tion. Therefore, the general formulation of the eccentricity vector is 

 
 

 

2 3

2 2

2 2

1

0 if 0

0

1
otherwise

cos

sin

z

z

t

t

z

  

 
 

 
 

  
  

   
   

 
              



e   (2.15) 

 

4. Semi-major axis ( a ) 

The semi-major axis is given by 

 
 

2 2 2

2 2 2 2 21 2

z

e
a

z

 

    









h
  (2.16) 

 

5. Argument of perigee ( ) 

The argument of perigee is given by 

  ˆ ˆarccos  N e   (2.17) 
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After some mathematical manipulations and arbitrarily choosing 0   in the case of planar circular Keplerian 

orbit, the general expression for the argument of perigee is 

 

   

   

2 3

2 3

2 3

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 if 0

if 0

if 0

2 if 0 0

3 2 if 0 0

z

z

t z

t z

z z

z z

z

z z

  

   

    


        

        

   


  
  

 

 

 
 
       



      


  (2.18) 

 

6. True anomaly ( ) 

The true anomaly is given by 

   ˆ ˆcos   e r   (2.19) 

In the case of a circular planar Keplerian orbit, Eq. (2.19) becomes Eq. (2.20), because of the choice of the eccen-

tricity vector shown in Eq. (2.15). 

    cos cos t t        (2.20) 

On the other hand, a NKO is characterized by the expression of the true anomaly given, after some mathematical 

manipulations, as 

 

2 2 2 2

2 2 2 2

0 if 

if 

z

z

   


    

 









  (2.21) 

Therefore, the general expression for the true anomaly is found by unifying Eqs. (2.20)-(2.21), as follows. 

 

2 3

2 2 2 2

2 2 2 2

if 0

0 if 

if 

z

z

t

z

   

    

    





   


 




  (2.22) 

Note that the case  2 2 2 20z z      is not taken into account inside Eq. (2.22). However, this case 

corresponds to an osculating circular orbit and this is not possible for the types of NKOs taken into account within 

this study. 
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Summary 
The forward map from NKOs to osculating classical Keplerian elements described in Section 2.1.1.1 is summa-

rized as: 

 

          
    

2 2

2 2 2 2

2 2 2 2

2 2

2 3

2 3

2 3

0 if 0

arccos sin sgn if cos 0 0 cos 0 0

2 arccos sin sgn

2

otherwise

0 if 0

if 0

if 0

2 if

arccos

 0

z
a

z

z

z

t z t z t z

t z

z

t z

t

e

i
z

z

z

 

   

   







  

 

  

   

    


  





 


      









 
 


 










 

 

  

   


     

   

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 3

2 2 2 2

2 2 2 2

0

3 2 if 0 0

if 0

0 if 

if 

z z

z

z

z z

t

z

z

z

z

     

        

   

    

    






    



      


   


 

 

 








  (2.23) 
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2.1.1.2. Modified Equinoctial Elements 

In order to have a mapping with no singularities, a map from Cartesian position and velocity to Modified Equi-

noctial Elements (MEE) is derived. MEE have been introduced to avoid singularities occurring in Keplerian orbits in 

the case of planar and/or circular orbits and are defined as follows:21  

 

 
 

 

   

   

21

cos

sin

tan 2 cos

tan 2 sin

p a e

f e

g e

h i

k i

L





 











  



 



 

  

  (2.24) 

Starting from the expressions of the Cartesian position and velocity vectors (Eqs. (2.5) – (2.6)) and the analytical 

mapping of the osculating classical Keplerian elements described in Section 2.1.1.1 (Eq. (2.23)), the mapping from 

NKO elements  ,,
T

z    to osculating modified equinoctial elements is derived in the following sub-sections. 

1. Semi-latus rectum ( p ) 

 
 2 2 2 2 2z

p
  

 


 

h
  (2.25) 

2. In-plane element ( f ) 

In order to derive the general formulation for the in-plane element f , let us first consider the case of zero-dis-

placement orbits (i.e. 0z  ). 

From Eq. (2.11), the value of the right ascension of the ascending node for a zero-displacement orbit is simply 

 
0

0
z

    (2.26) 

From Eq. (2.18), the value of the argument of perigee for a zero-displacement orbit is 

 

2 3

2 3

2 3

0 if 0

if 0

if 0

z

t z

t z

  

    

    

   


   
    

  (2.27) 

From Eqs. (2.26)-(2.27), the value of the longitude of perigee   is 

 

2 3

2 3

2 3

0 if 0

if 0

if 0

z

t z

t z

  

    

    

   


     
    

  (2.28) 

    

 

2 3

2 3

2 3

1 if 0

cos if 0

cos if 0

cos

z

t z

t z

  

    

   

 










   
   

  (2.29) 

From Eq. (2.29), and remembering the expression of the eccentricity provided in Eq. (2.14), the expression of the 

in-plane element f  for a zero-displacement orbit is 
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    
2 3

0
cos cos

z
tef

  
 




    (2.30) 

Considering now a displaced orbit, Eq. (2.11) gives the expression of the RAAN as 

 

*

*0

if 

2 if ~z

A

A

 
  


  (2.31) 

in which the condition 

      cos 0 0 cos 0 0t tA z z           (2.32) 

The expression of the argument of perigee, given by Eq. (2.18), is 

 
2 if 

3 2 if 

B

C







 


  (2.33) 

in which the two conditions above are 

 
   

   

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0

0 0

z z

z

B z z

C z zz

       

       

   


   

      

     




  (2.34) 

From Eqs. (2.31)-(2.33), the cosine of the longitude of perigee is 

  

   

   

   

   

* *

* *

* *

* *

3

5

cos 2 sin if 

cos 2 sin if 
cos

cos 2 sin if ~

cos 2 sin if ~7

A B

A C

A B

A C










 

 


    

   

 
  


   


 

 

  (2.35) 

  
     

     

*

0 *

sin if ~
cos

sin if ~
z

e A C A B
e

e A B A C
f 



   
   

   






  (2.36) 

After some mathematical manipulations, Eq. (2.36) becomes 

  
   

   0

cos sgn if 
cos

cos sgn if z

e z Bt
f

e t
e

z C







  





  (2.37) 

Recalling the expression of the eccentricity given in Eq. (2.14) and the conditions shown in Eq. (2.34), it is possible 

to demonstrate that the expression of the in-plane element f  for out-of-plane orbits shown in Eq. (2.37) becomes 

  
2 2 2

0

2

cos
z

z
tf

   




 
   (2.38) 

Note that the expression for the in-plane element f  in case of zero-displacement orbits shown in Eq. (2.30) is a 

particular case of Eq. (2.38). Therefore, the general expression for the in-plane element f  is given by Eq. (2.39). 

  
2 2 2 2

cos
z

tf
   




 
   (2.39) 
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3. In-plane element ( g ) 

As for the case of the in-plane element f , let us divide the derivation of the general mapping for the in-plane 

element g  considering the in-plane and out-of-plane orbits separately at first. Starting by considering a zero-displace-

ment orbit and remembering the value of the longitude of perigee shown in Eq. (2.28), the value of the sine of the 

longitude of perigee is given by 

    

 

2 3

2 3

2 3

0 if 0

sin if 0

sin  

in

0

s

if

z

t z

t z

  

    

   

   


   
   

   (2.40) 

From Eq. (2.40), and remembering the expression of the eccentricity shown in Eq. (2.14), the expression of the in-

plane element g  for a zero-displacement orbit is 

    
2 3

0
sin sin

z
teg

  
 




    (2.41) 

Following the same arguments as those for the derivation of Eq. (2.35), the sine of the longitude of perigee is 

  

   

   

   

   

* *

* *

* *

* *

3

5

sin 2 cos if 

sin 2 cos if 
sin

sin 2 cos if ~

sin 2 cos if ~7

A B

A C

A B

A C










 

 


   

    

 
  


   










   (2.42) 

  
     

     

*

0 *

cos if ~
sin

cos if ~
z

e A B A B
e

e A C A C
g 



   
   

   






  (2.43) 

Note that both the conditions in Eq. (2.43) do not depend on the condition A , so that Eq. (2.43) can be rewritten as 

  
 

 

*

0 *

cos if 
sin

cos if 
z

g
e B

e
e C







  







  (2.44) 

Recalling the definition of the angle     * arccos sin sgnt z , Eq. (2.44) can be further simplified and re-

written as 

  
   

   0

sin sgn if 
sin

sin sgn if z

e z Bt
g

e t
e

z C







  





  (2.45) 

As for the in-plane element f , recalling the expression of the eccentricity given in Eq. (2.14) and the conditions 

shown in Eq. (2.34), it is possible to demonstrate that the expression for the in-plane element g  for out-of-plane orbits 

shown in Eq. (2.45) becomes 

  
2 2 2

0

2

sin
z

z
tg

   




 
   (2.46) 
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Note that the expression for the in-plane element g  in case of the zero-displacement orbit shown in Eq. (2.41) is 

a particular case of Eq. (2.46). Therefore, the general expression for the in-plane element g  is given by Eq. (2.47). 

  
2 2 2 2

sin
z

tg
   




 
   (2.47) 

 

4. Out-of-plane element ( h ) 

Before deriving the expression for the out-of-plane element h , let us recall the following identity. 

 
 

 

1 cos
tan

2 sin

xx

x

 
 

 
  (2.48) 

Recalling the formulation of the inclination shown in Eq. (2.8) as 
2 2

arccosi
z





 
 
  

 , the expression of 

 tan 2i  is, therefore, given by 

 
2 2 2 2

22 2

2 2

1

tan 1
2

sin arccos

zi z

zz

z



  






   
              

    

  (2.49) 

 
2 2

tan
2

zi

z

   
   



 
  (2.50) 

From Eq. (2.50), and recalling the value of      cos sin sgn zt  introduced in Eq. (2.11), the expression of 

the out-of-plane element h  is 

 
  2 2sin z

z

t
h

   
    (2.51) 

Note that there are no singularities in Eq. (2.51) in the case of zero-displacement orbits. It can be seen, in fact, that 

 
0

lim 0
z

h


   (2.52) 

 

5. Out-of-plane element ( k ) 

For the expression of the out-of-plane element k , the formulation of  sin   is needed. From Eq. (2.11), it is 

  
           

     

* 2 2

* 2 2

sin 1 sin if 0 cos 0 0 cossgn
s

0 0

sin 2 1 sin o
i

therwi
n

sgn se

t z t z tz z

t z

  

 

            
 

  





   

  (2.53) 
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Defining the auxiliary variable    2 21 s s nin: gw t z , the formulation of the out-of-plane element k  is 

  

     
2 2

2 2

if 0 cos 0 0 cos

tan sin
2

otherw se

0 0

i

z
w

zi
k

z t z

z

z

t z

w

 
 

 


      

 

 

   


 


 




  (2.54) 

Let us study the two branches of the solution separately starting from the first one. If the first condition in Eq. 

(2.54) is verified, there is 

    
   

   

2 2
2 2

2 2

2 2

0 if 0

cos
1 sin if 0

cos
if 

sgn

0

z

t
t z

z

t
z

z

zz
k z

z

z

   


  


 


 

  

    




 




  (2.55) 

 

   2 2

if 0

c

0

othe
s

r i
o

w se

z

t z

z

k   




  






  (2.56) 

On the contrary, if the second condition of Eq. (2.54) is verified then 

    

   

   

2 2

2 2

2 2

2 2

sgn

cos
if 0

1 sin

cos
if 0

t
z

z

z

z
k zt

tz

z
z

z

  

 


  








 



 

  
 
 


  (2.57) 

 
  2 2cos zt

k
z

   
   (2.58) 

Therefore, Eq. (2.54) can be rewritten, by unifying Eq. (2.56) and Eq. (2.58), as 

   2 2

if 0

co

0

otherwise
s

z

t

z

k z  




 






  (2.59) 
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However, it can be demonstrated that 

 
  

0

2 2c
im 0

os
l
z

t

z

z  



 
 


 
  


  (2.60) 

Therefore, the first condition in Eq. (2.59) is actually redundant and unnecessary. The general expression for the 

out-of-plane element k  is therefore given by 

 
  2 2cos zt

k
z

   
   (2.61) 

 

6. True longitude ( L ) 

In order to derive the general formulation for the true longitude L , let us consider three cases 0z  , 0z  , and 

0z  , respectively. 

In the case of zero-displacement orbits (i.e. 0z  ), the expression of the true longitude is simply given by the 

formulations of RAAN, argument of perigee, and true anomaly given in Eq. (2.23), as 

 
0z

L t

   (2.62) 

In the case of positive out-of-plane displacement (i.e. 0z  ), the formulations of the angles  ,  , and   are 

the following. 

 
 *

*0

if cos 0

2 otherwisez

t



 
  


  (2.63) 

 

2 2 2 2

0 2 2 2 2

2 if 

3 2 if 
z

z

z

    


    


 
 







  (2.64) 

 

2 2 2 2

0 2 2 2 2

0 if 

if 
z

z

z

   


    






 
 



  (2.65) 

From Eqs. (2.64)-(2.65) and considering the angles lying in the interval  0,2  then 

  
0 2z


 


    (2.66) 

Therefore, the expression of the true longitude for positive out-of-plane displacement is 

 

 *

0 0
*

if cos 0
2

52
otherwise

2

z z

t

L







 


 

   
 


  (2.67) 

In the case of negative out-of-plane displacement (i.e. 0z  ), the formulations of the angles  ,  , and   are 

the following. 
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 *

*0

if cos 0

2 otherwisez

t



 
  


  (2.68) 

 

2 2 2 2

0 2 2 2 2

2 if 

3 2 if 
z

z

z

    


    


 
 







  (2.69) 

 

2 2 2 2

0 2 2 2 2

0 if 

if 
z

z

z

   


    






 
 



  (2.70) 

From Eqs. (2.69)-(2.71) and considering the angles lying in the interval  0,2  then 

  
0

3

2z
  


    (2.71) 

Therefore, the expression of the true longitude for negative out-of-plane displacement is 

 

 *

0 0
*

3
if cos 0

3 2

72
otherwise

2

z z

t

L

 




 


 

   
 


  (2.72) 

The general expression for the true longitude L  is given by unifying Eq. (2.62), Eq. (2.67), and Eq. (2.72) as 

 

 

 

 

 

*

*

*

*

if 0

if 0 cos 0
2

5
if 0 cos 0

2

3
if 0 cos 0

2

7
if 0 cos 0

2

t

t

t

t

t

z

z

z
L

z

z






 

 

 





    


   

 

  







 



  


  (2.73) 

A further simplification of the general formulation of the true longitude shown in Eq. (2.73) can be carried out by 

studying the variation of the angle 
* . In order to further simplify the expression of the true longitude, let us start 

recalling the formulation of the angle     * arccos sin sgnt z . A study on the characteristics of this function 

can be done by plotting the value of 
*  against the angle x t . From Eq. (2.73) it is evident that there is no interest 

in studying the value 
0

*

z
 . Therefore, two separate plots are shown in Figure 2, considering the case of positive and 

negative vertical displacement, respectively. 
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Figure 2. Plot of arccos(sin(x)sgn(z)). 

From the plots shown in Figure 2, it can be verified that the expression of *  in Eq. (2.74) is true. 

 

 

 

 

 

*

2 if 0 cos 0

2 if 0 cos 0

3 2 if 0 cos 0

3 2 if 0 co 0

5

s

zt t

t t

t t

zt

z

t

z

  

  

  

  

    


   
 

   
    



   (2.74) 

Therefore, Eq. (2.73) can be rewritten in a simpler form as 

 L t   (2.75) 

 

Summary 
The forward map from NKOs to osculating modified equinoctial elements described in Section 2.1.1.2 is summa-

rized as: 

 

    

 
  

 

2 22 2 2 2

2 2
2 2 2 2

2 2 2 2

sin

c
co

os

sin

s

zz
p h

t

t
t k

z

z

zz
f

z
g Lt t

    



     




   
 










 







 
 

  (2.76) 
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2.1.1.3. Augmented Integrals of Motion 

The augmented integrals of motion are defined as 

 

Orbital angular momentum vector

Eccentricity vector

True longitudeL







h

e   (2.77) 

Note that there exists a relationship between the two integrals of motion (i.e. 0 h e ), which reduces the number of 

independent elements for the orbit description from 7 to 6. 

Starting from the expressions of the Cartesian position and velocity vectors (Eqs. (2.5)-(2.6)), the mapping from 

NKO elements  ,,
T

z    to osculating augmented integrals of motion is shown in Eq. (2.78). The formulations of 

angular momentum vector, eccentricity vector, and true longitude are given from Eqs. (2.7), (2.15), and (2.75), re-

spectively. 

 

 

 

 

 

2

2 2

2 2

1

cos

sin

cos

sin

z t

z t

t

t
z

z

tL

 

 



 
 

 
 



 
 

  
 
 

 
   
        

 



h

e   (2.78) 

 

2.1.2. Sensitivity Analysis 

A sensitivity analysis has been performed in order to study the behavior of the mappings in the presence of errors 

in the NKO elements  ,,
T

z   . Both analytical and numerical sensitivity analyses have been carried out to confirm 

the results found. 

The analytical sensitivity analysis is centered on the computation of the Jacobian J  of the mapping. Defining the 

non-Keplerian orbit to osculating orbital elements map as   and the set of NKO elements  , ,
T

z  y , the analyt-

ical sensitivity analysis is performed by means of the Jacobian of the system such that 

 





J


y
  (2.79) 

In the following sub-sections, the definition of the parameters used for the sensitivity analysis and a definition of 

the structure of the Jacobian are given for each set of osculating orbital elements. 
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2.1.2.1. Classical Keplerian Elements 

The mapping   from non-Keplerian orbit to osculating classical Keplerian elements is shown in Eq. (2.23). The 

Jacobian of this mapping is 

 

T

KEP

a e i

z z z z z z

a e i

a e i

 

 

     

 

     

      
 
     
 
      

  
      
      
 
    



 







J   (2.80) 

The elements of the Jacobian are not shown here for the sake of conciseness. 

It is important to note that some of the formulations found for the NKO to osculating classical Keplerian elements 

map are expressed through a piecewise law, which creates difficulties in dealing with analytical sensitivity analysis. 

It is not possible, for instance, to analytically differentiate the expression of right ascension of the ascending node, 

argument of perigee, and true anomaly. Therefore, for what concerns these elements, only a study based on numerical 

sensitivity analysis has been carried out. 

The parameters used to test the sensitivity of the mapping to uncertainties in the NKO parameter iy  are as follows. 

 Relative error of the semi-major axis due to uncertainties in the NKO elements. 

 
  ,

, :
i

i

a y i

a y

Ja aa a a

a a

a

a a

y 


 
      (2.81) 

 Absolute error of the eccentricity due to uncertainties in the NKO elements. 

  , ,:
i ie y e y ie e e ee yJe             (2.82) 

 Normalized error of the angles  , , ,i     due to uncertainties in the NKO elements. 

 
,

, :
i

i

y i

y

J y 





 


    (2.83) 

2.1.2.2. Modified Equinoctial Elements 

The mapping   from non-Keplerian orbit to osculating modified equinoctial elements is shown in Eq. (2.76). The 

Jacobian of this mapping is 

 

T

MEE

p f g h k L

z z z z z z

p f g h k L

p f g h k L

     

     

      
 
     
 
      

  
      
      
 
      

J   (2.84) 

Again, the elements of the Jacobian are not shown here for the sake of conciseness. 
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The parameters used to test the sensitivity of the mapping to uncertainties in the NKO parameter iy  are as follows. 

 Relative error of the semi-latus rectum due to uncertainties in the NKO elements. 

 
  ,

, :
i

i

p y i

p y

Jp pp p

p

p

p

p

p

y

p

 


 
      (2.85) 

 Absolute error of the elements  , , ,x f g h k  due to uncertainties in the NKO elements. 

  , ,:
i ix y x y ix x x xx yJx             (2.86) 

 Normalized error of the true longitude L  due to uncertainties in the NKO elements. 

 
,

, :
i

i

L y i

L y

J yL 



 


    (2.87) 

2.1.2.3. Augmented Integrals of Motion 

The mapping   from non-Keplerian orbit to osculating augmented integrals of motion is shown in Eq. (2.78). 

The Jacobian of this mapping is 

 

T

y yx xz

y yx

z

zxz

y yx

I M

zx

o

z

A

h eh eh e L

z z z z z z z

h eh eh e L

h eh eh e L

      

      

     
 
       

     
  

       
     
 
        

J   (2.88) 

Again, the elements of the Jacobian are not shown here for the sake of conciseness. 

The parameters used to test the sensitivity of the mapping to uncertainties in the NKO parameter iy  are as follows. 

 Magnitude of the difference vector between the nominal value of the angular momentum and that related 

to uncertainties in the NKO elements. Relative error. 

 
  ,

, :
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y
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h h h h

 



   

  h

h

Jh h h h+ h h
  (2.89) 

 Magnitude of the difference vector between the nominal value of the eccentricity vector and that related 

to uncertainties in the NKO elements. Absolute error. 

  , ,:
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 Normalized error of the true longitude L  due to uncertainties in the NKO elements. 
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2.1.3. Numerical Test Cases 

Two different sets of test cases have been considered. The first set has been chosen to validate the forward map-

pings and to study the behavior of the osculating elements. The parameters have been selected for ease of illustration. 

Therefore, the acceleration required to generate the NKOs considered is not constrained and so can be well above the 

technical limitations of the current low-thrust technology. The second set has been chosen to study the impact of 

uncertainties in the non-Keplerian orbit properties on the classical orbital elements. These two sets are described in 

Section 2.1.3.1 and Section 2.1.3.2, respectively.  

2.1.3.1. Mappings 

15 different scenarios have been tested in order to both verify the validity of the mappings derived in the previous 

sections and to study the behavior of the osculating elements, as detailed below. All results of the test cases have been 

numerically verified by means of MATLAB. 

In the following sub-section, all test cases are described. Figure 3 shows the orbits of all these test cases used in 

this study. 

 

Figure 3. Earth-centered view of the orbits of all test cases used. 
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Test cases 
 

1. GEO 

The first test case is a conventional Geostationary Earth Orbit (GEO) described by 

 

3

0

GEO :  42,164 km

GEO

GEO GEO

GEO GEO

r

r

z



 

 



 





  (2.92) 

2. Type 1 NKO 

Two test cases are considered for the Type 1 NKO. 
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  (2.93) 

The term   is the angle between the position vector r  and the ˆ ˆX Y  plane. In this case, two values are con-

sidered so that both positive and negative out-of-plane displaced NKOs are taken into account. 
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  (2.94) 

3. Type 2 NKO 

Four test cases are considered for the Type 2 NKO. 
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  (2.95) 

4. Type 3 NKO 

Eight test cases are considered for the Type 3 NKO. Six of them are characterized by an out-of-plane displacement 

while the other two are in-plane displaced NKOs. 
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  (2.97) 
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Results and discussion 

Figure 4 shows the Type 1 NKO with 1 0z   described by Eq.(2.93), together with its osculating Keplerian orbits, 

corresponding to the instantaneous orbital elements of the spacecraft if the thrust is nulled. In this case, it is shown 

how the semi-major axis and eccentricity of the osculating orbits do not change, but the osculating orbit plane rotates 

around the vertical axis. The spacecraft, being always at the apogee of the osculating Keplerian orbits, describes the 

desired NKO. Therefore, the envelope resulting from the osculating Keplerian orbits after an entire orbit is well ap-

proximated by a truncated cone, characterized by height H and radii of the bases 1 2,r r , as follows. 

 

 

 

1

2

1 cos

1 sin

r a e i

r

H z a e i



  



   

  (2.98) 

 

Figure 4. Type 1 out-of-plane displaced GEO (solid black line) and osculating Keplerian orbits. In gray is shown the 

truncated cone envelope resulting from the osculating Keplerian orbits after an entire orbit. 

 

In the following sub-sections, the results of the mappings using each set of osculating elements are shown and 

discussed. 
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1. Classical Keplerian elements 

Table 1 shows the summary of the results of the non-Keplerian orbit to classical Keplerian elements map for all 

the test cases taken into account. 

 

Table 1. Summary of the results of the non-Keplerian orbit to classical Keplerian elements map.* 

 GEO Type 1 NKO Type 2 NKO 
Type 3 NKO 

(out of plane) 

Type 3 NKO 

(in plane) 

  GEOa r
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* The symbol  is used with the meaning “linearly increasing with slope  ”. The entry 
0
 , for instance, means that the value of the generic 

angle  in time is  
0

t t   . 
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2. Modified equinoctial elements 

Table 2 shows the summary of the results of the non-Keplerian orbit to modified equinoctial elements map for all 

the test cases taken into account. 

 

Table 2. Summary of the results of the non-Keplerian orbit to modified equinoctial elements map.* 

 GEO Type 1 NKO Type 2 NKO 
Type 3 NKO 

(out of plane) 

Type 3 NKO 

(in plane) 
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* The symbol  is used with the meaning “linearly increasing with slope  ”. The entry 
0
 , for instance, means that the value of the generic 

angle  in time is  
0

t t   . 

 

Figures 5-6 show the evolution over one orbit of the in-plane modified equinoctial element f  and the out-of-

plane modified equinoctial element h , respectively. It can be seen that the amplitudes of the oscillations depend 

respectively on the eccentricity and inclination of the osculating orbits, as defined in Eq. (2.24). 
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Figure 5. Evolution of the osculating in-plane modi-

fied equinoctial element f over one orbit. 

 

Figure 6. Evolution of the osculating out-of-plane 

modified equinoctial element h over one orbit. 

 

3. Augmented integrals of motion 

Figure 7 shows the cone created by the osculating angular momenta due to the rotation of the osculating Keplerian 

orbits. The height of the cone and its base radius depend on both vertical displacement z  and radius of the orbit  . 

For example, the two Type 2 NKOs with the largest vertical displacement are those with the largest base radius. On 

the other hand, the two Type 2 NKOs with 
2 5z R   have a smaller base radius than the out-of-plane Type 3 NKOs, 

which have 3op GEOz r . Among the Type 3 NKOs, the orbits with the lowest radius 3op  have the largest base radius, 

followed by the orbits with the largest radius and, last, those orbits with 3 3op opz  . The osculating angular momenta 

for the in-plane Type 3 NKOs is parallel to the angular momentum of GEO and therefore not clearly distinguishable 

in the plot. 

 

Figure 7. Time evolution of the osculating angular momentum vector. All the test cases studied are shown. 
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Figure 8 shows the double cone created by the osculating eccentricity vectors due to the rotation of the osculating 

Keplerian orbits. The height of the cone and its base radius depend on both the vertical displacement z  and the radius 

of the orbit  . The osculating eccentricity vector depend on the sign of the vertical displacement, whereas the oscu-

lating angular momentum does not. Moreover, in this case, the behavior is different with respect to the angular mo-

mentum, as can be better seen from Figure 9. For example, the two Type 2 NKOs with the largest vertical displacement 

are not those with the largest base radius, but are those with the largest value of eccentricity. On the other hand, the 

two Type 3 NKOs with 3 1.1op GEOr    have the largest base radius. The osculating eccentricity vectors for the in-

plane Type 3 NKOs lie on the ˆ ˆX Y  plane, while the eccentricity vector in the GEO case is arbitrarily set to 

 1 0 0
T

GEO e . 

 

Figure 8. Time evolution of the osculating eccentricity 

vector. All test cases studied are shown. 

 

Figure 9. Time evolution of the osculating eccentricity 

vector. X-Y view. 

 

2.1.3.2. Sensitivity Analysis 

Three test cases have been used to investigate the sensitivity of the mappings to a change in the NKO elements 

 ,,
T

z   . All the test cases are chosen as feasible mission scenarios, with reasonable required low-thrust acceleration, 

and are all displaced GEO. 

The first test case is an out-of-plane displaced GEO Type 1 NKO, defined as in Eq. (2.93). The displacement angle 

  has been chosen such that the spacecraft hovers above GEO at a vertical displacement equal to twice the station-

keeping box. Station-keeping regulations currently require a station-keeping box height of  0.05,  0.1 deg  .4 The 

worst-case scenario is taken into account here so that Eq. (2.93) becomes 
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The second test case is an in-plane displaced GEO Type 3 NKO. A positive in-plane displacement of 

3 147 km   is considered. This value has been chosen to be the same as the out-of-plane displacement, as in 

Heiligers at al.4  
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  (2.100) 

The last test case has been chosen in order to verify the behavior of the map in case of very small vertical displace-

ments, such that a small error in the out-of-plane displacement 1(2)z  causes the orbit to cross the 0z   plane. Such a 

test case has been chosen as a feasible mission scenario for a displaced GEO Type 1 NKO with a small vertical 

displacement, defined in Eq. (2.93). The displacement angle   has been chosen so that the actual out-of-plane 

displacement is 1

1(2) ~ 10  kmz  . Therefore, Eq. (2.93) becomes 
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  (2.101) 

The relative error of the NKO elements is considered fixed and constant, as follows. 
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  (2.102) 

Note that the relative error related to the out-of-plane displacement 1(2)z  for the third test case is much larger than 

that considered for the other two. This has been done in order to have a crossing of the 0z   plane. In fact, a 200% 

error on 1(2)z  for the third test case corresponds to the same displacement as the original but with a different sign, as 

shown in Eq. (2.105). 

The values of the absolute errors in the three test cases are as follows. 
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Note that the term 3z  in Eq. (2.104) depends on the displacement 1z  of the out-of-plane displaced GEO. This is 

made on purpose in order to have a non-zero error for the out-of-plane displacement. 

The analytical sensitivity analysis has been described in Section 2.1.2. The numerical sensitivity analysis has been 

performed by computing the values of the osculating elements from the perturbed NKO elements and then computing 

the errors as described for the analytical case. 

 

Results and discussion 
 

1. Classical Keplerian elements 

 The sensitivity analysis study demonstrates that the mapping that uses the classical Keplerian elements is ex-

tremely sensitive to uncertainties in the NKO elements. This is mainly due to the piecewise formulation of the map 

itself. A small error on either   or  , for example, can cause the value of the argument of perigee   to jump from 

one branch to another (see Eq. (2.23)). Moreover, only a numerical sensitivity analysis can be carried out on half of 

the classical Keplerian elements. 

For the sake of conciseness, only the most interesting plots of the sensitivity analysis study are shown here. Table 

3 shows a summary of the results of the sensitivity analysis study in the case of classical Keplerian elements. 

 

Table 3. Summary of the results of the sensitivity analysis study in case of classical Keplerian elements.* 

Errors due to 

uncertainties 

Test 

case 
z      

a  all 610 %  0.4%  0.2%  

e  all 810  33 10  32 10  

i  

1 
410 %  

410 %  

0  2 ~ 0  

3 0  0  

  

1 0  

0  

linearly increasing up to 0.2%  

2 up to 100%  0  

3 100%  linearly increasing up to 0.2%  

  

1 0  100%  100%  

2 up to 100%  0  linearly increasing up to 0.2%  

3 100%  100%  100%  

  
1-3 

0  
100%  100%  

2 0  0  

* Note that sometimes ~0 is used against 0. This is done to stress the difference between a null value and a very small (numerical) value. 
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Figure 10 shows the evolution of the osculating RAAN   over one orbit. The test case for the small displacement 

GEO (test case 3) is shown. The nominal value and the values due to the uncertainties on the NKO elements are 

considered. It is shown that an error in the out-plane displacement causes the RAAN to have a constant 180-deg error 

due to the piecewise formulation of the map (Eq. (2.23)). Figure 11 shows a zoom on the Ŷ  axis of the normalized 

error of the RAAN for the same test case. It is shown how an error on the orbital angular velocity causes the RAAN 

(and, therefore, the orbit plane) to rotate at a different velocity. The first test case shows the same behavior. Similarly, 

the argument of perigee shows the same behavior in case of planar orbit (i.e. test case 2). 

 

Figure 10. Evolution of the osculating RAAN over 

one orbit. Very small displacement GEO (test case 3). 

 

Figure 11. Normalized error of the RAAN for the 

case of very small displacement GEO (test case 3). Zoom 

on Y axis. 
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2. Modified equinoctial elements 

For what concerns the modified equinoctial elements, the sensitivity analysis study demonstrates that the mapping 

that uses these elements is very robust to uncertainties in the NKO elements. 

For the sake of conciseness, only the most interesting plots of the sensitivity analysis study are shown here. Table 

4 shows a summary of the results of the sensitivity analysis study in the case of modified equinoctial elements. 

 

Table 4. Summary of the results of the sensitivity analysis study in case of modified equinoctial elements.* 

Errors due to 

uncertainties 

Test 

case 
z      

p  all ~ 0  0.4%  0.2%  

f  all ~ 0  33 10   32 10   

g  all ~ 0  33 10   32 10   

h  

1 

62 10   

62 10   510  

2 0  0  

3 910  96 10   

k  

1 

62 10   

62 10   69 10   

2 0  0  

3 910  95 10   

L  all 0  0  linearly increasing up to 0.2%  

* Note that sometimes ~0 is used against 0. This is done to stress the difference between a null value and a very small (numerical) value. 

 

Figure 12 shows the evolution over one orbit of the in-plane modified equinoctial element f . The test case for 

the out-of-plane displaced GEO (test case 1) is shown. The nominal value and the values due to errors in the NKO 

elements are shown. It can be seen that the error on the in-plane element f  due to uncertainties in the NKO elements 

is of the same order of magnitude as the uncertainties themselves. The same behavior is noted for the other in-plane 

modified equinoctial element g . On the other hand, Figure 13 shows the evolution over one orbit of the out-of-plane 

modified equinoctial element h . The nominal value and the values due to errors in the NKO elements are shown. 

Figure 13 shows that the error on the out-of-plane element h  due to uncertainties in the NKO elements is orders of 

magnitude smaller than the value of the uncertainties. The same behavior is noted in the other out-of-plane modified 

equinoctial element k . Here, the semi-latus rectum shows a constant error due to uncertainties in the NKO elements 

of the same order of magnitude as the uncertainties themselves. Lastly, the true longitude exhibits a linearly increasing 

error due to a 0.1% uncertainty on the orbit angular velocity, as shown in Figure 11 for the RAAN case. After one 

orbit, the absolute error on the true longitude is 0.36 degL  . 
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Figure 12. Evolution of the osculating in-plane modi-

fied equinoctial element f over one orbit. Out-of-plane 

displaced GEO (test case 1). 

 

Figure 13. Evolution of the osculating out-of-plane 

modified equinoctial element h over one orbit. Out-of-

plane displaced GEO (test case 1). 

 

3. Augmented integrals of motion 

For the augmented integrals of motion, the sensitivity analysis study demonstrates that the mapping that uses these 

elements is robust to uncertainties in the NKO elements. 

For the sake of conciseness, and because all the errors are constant, the plots of the sensitivity analysis study are 

not shown here. Table 5 shows a summary of the results of the sensitivity analysis study in the case of augmented 

integrals of motion. 

 

Table 5. Summary of the results of the sensitivity analysis study in case of augmented integrals of motion.* 

Errors due to 

uncertainties 

Test 

case 
z      


h  all 43 10 %  0.2%  0.1%  


e  all ~ 0  33 10  32 10  

L  all 0  0  linearly increasing up to 0.2%  

* Note that sometimes ~0 is used against 0. This is done to stress the difference between a null value and a very small (numerical) value. 
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2.1.4. Non-Keplerian Orbit to Osculating Orbital Elements Map: Summary 

A summary of advantages and drawbacks of the three forward mappings investigated in this study is shown in 

Table 6.  

It has been noted that, regardless of the mapping and the test case chosen, a spacecraft on a non-Keplerian orbit is 

always at either the apogee or perigee of the osculating Keplerian orbit. This can cause sensitivity issues in case of 

small eccentricity. If the eccentricity of an orbit if small, as in the test cases presented here, even small variations of 

the NKO elements can cause the eccentricity vector to change sign. As shown in Eq. (2.23), if the term 

2 2 2 2z      changes sign due to a variation in one of the NKO elements, the eccentricity vector changes sign. 

Similarly, both argument of perigee and true anomaly have a 180-deg difference with respect to their previous values. 

Therefore, the spacecraft appears to instantaneously change its position in the osculating Keplerian orbit from apogee 

to perigee or vice versa, without changing its physical position in the Cartesian reference frame. The modified equi-

noctial elements are not affected by this problem. This characteristic, together with their easy formulation and their 

robustness to uncertainties in the NKO elements, makes the use of modified equinoctial elements the best choice for 

the non-Keplerian orbit to osculating orbital elements map. 

 

Table 6. NKO to osculating orbital elements map. Summary of advantages and drawbacks of the chosen mappings. 

 Classical Keplerian elements 
Modified equinoctial 

elements 

Augmented integrals of 

motion 

Advantages 

 Easy to understand 

 Only one element is time de-

pendent 

 Easy formulation (no piece-

wise elements) 

 Robust to uncertainties in 

the NKO elements 

 Robust to the switch apo-

gee/perigee 

 No singularities 

 Only one element ( L ) is 

linearly increasing with 

time if there are uncertain-

ties in   

 Easy formulation 

 No singularities 

Drawbacks 

 Piecewise formulation 

 Very sensitive to uncertain-

ties 

 Issues around 0z   

 Singularity: 0 if 0z   

 Very sensitive to the switch 

apogee/perigee 

 Analytical Jacobian unde-

fined for 3 out of 6 elements 

because of the piecewise for-

mulation 

 Two elements ( , ) are lin-

early increasing with time if 

there are uncertainties in   

 5 elements are time depend-

ent 

 Less intuitive 

 7 elements instead of 6 

 Very sensitive to the switch 

apogee/perigee (eccen-

tricity vector changes sign) 
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2.2. Inverse Map: Osculating Orbital Elements to Non-Keplerian Orbit 

After the forward mappings from non-Keplerian orbits families to osculating orbital elements described in Section 

2.1, three different inverse mappings from orbital elements to non-Keplerian orbit geometry have been generated. 

These mappings have been derived in closed, analytical form. A sensitivity analysis has been performed to understand 

the impact of uncertainties in the classical orbital elements on the NKO properties. 

The analytical formulation of the three inverse mappings is shown in Section 2.2.1, whereas the sensitivity analysis 

performed on the maps is described in Section 2.2.2. Section 2.2.3 shows the numerical test cases taken into account. 

Lastly, the three mappings are compared through their advantages and drawbacks in Section 2.2.4. 

2.2.1. Mappings 

In the following sub-sections, the inverse mappings from osculating orbital elements to non-Keplerian orbits are 

summarized for the three sets of elements considered. 

2.2.1.1. Classical Keplerian Elements 

The map from osculating Keplerian elements KEPx  to Cartesian position and velocity is here derived. Note that 

the following map does not work in case the osculating Keplerian orbit is a parabola. However, no NKOs in the two-

body problem are described by osculating parabolas. 

The semi-latus rectum is given by 

  21p a e    (2.106) 

The radius of the orbit is 

 
1 cos

p
r

e 



  (2.107) 

In the orbital reference frame  ˆ ,, ˆ ˆr h , position and velocity vectors are given by 

 

cos cos sin

sin , sin cos

0 0

orb orb

r r r

r r r

  

  

  
  

    
  





  

r v   (2.108) 

in which 

 

 

2 2

2

sin
sin

1 cos 1 cos

p ep
r e

t e pe

ph

r r




 


 

  
   
 


 

  








  (2.109) 
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The rotation matrix      3 1 3i    R R R R  from orbital reference frame to Earth-Centered Inertial 

(ECI) is 

 

cos cos sin sin sin cos sin cos

cos cos co

cos cos sin sin

sin sin sin cos

sin sin sin cos c

s sin sin cos cos co

os

s

i

i

i

i

i

i

i

i

i

   

   

 

      

    

 
 

  
 
  

 R   (2.110) 

 

From Eqs. (2.108) and (2.110), the Cartesian position and velocity vectors in ECI reference frame are 

 
orb

orb






R

R

r r

v v
  (2.111) 

From the osculating Keplerian elements to Cartesian position vector map (Eq. (2.111)) and the definition of the 

Cartesian position vector given in Eq. (2.5), the NKO elements  ,z   are derived as follows. 

 
 

 
 

 
2 2

cos sin cos s
1

i
1

sin sin sin sin
1 cos 1 cos

nz

a e a e
z r i i

e e
i     

 

 
  

 
    (2.112) 

 

 
 

   
2

2 22 2

11 12 21 22

1
cos sin cos sin

1 cos
x yr r R

a
R

e
R

e
R    


   





   (2.113) 

 

After some algebraic manipulations of Eq. (2.113), the formulation for the orbital radius   is 

 
 

 
    

2

2
1

3 cos 2 2cos sin
2 1 cos

2
a e

i i
e

  








    (2.114) 

For what concerns the orbital angular velocity  , let us compute first the magnitude of the velocity vector. Be-

cause the rotation matrix R  shown in Eq. (2.110) does not change the magnitude of the vector, it is easier to compute 

the magnitude of the velocity vector in the orbital reference frame (Eq. (2.108)). 

    
2 2

2 2 2cos sinsin cosv r rrr rr            (2.115) 

Using Eq. (2.109) and after some algebraic manipulation, Eq. (2.115) becomes 

  21 2 cosv e e
p


     (2.116) 

Therefore, the formulation of the orbital angular velocity  is given by 

 

 
 

    

2

23 2
3

1 2 cos
2 1 cos

23 cos 2 2cos sin1

v e e
e

i ia e

 
 

  

 
  

 
  (2.117) 
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Summary 
The inverse map from osculating classical Keplerian elements to NKOs elements described in Section 2.2.1.1 is 

summarized as 

 

 
 

 
 

    

 
 

    3

2

2

2

2

23 2

1
sin sin

1 cos

1
3 cos 2 2cos sin

2 1 cos

1 2 cos
2 1 cos

3 cos 2 2cos s1

2

2 in

a e
z i

e

a e
i i

e

e e
e

i ia e

 


  


 
 

 











 






 
 

 

  (2.118) 

 

2.2.1.2. Modified Equinoctial Elements 

The map from osculating modified equinoctial elements MEEx  to Cartesian position and velocity is now derived. 

First, let us define the following auxiliary variables, which will be useful in the mathematical derivation to shorten 

the equations. 

 
2 2

2 2

1 cos sin

1

q f L g L

r p q

s

h

h k

k

   




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





  (2.119) 

From Broucke and Cefola,23 and after some algebraic manipulation due to the difference in the elements consid-

ered, the formulation of the Cartesian position vector is given as from Betts (Eq. 6.42, page 266).24 

 

 

cos 2 sin

si
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2 sin co

n

s

2 cos
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 
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  



r   (2.120) 

From the formulation of the position vector in Eq. (2.120), the Cartesian velocity vector is given by Eq. (2.121), 

in which  
2

dL dt pp q , as from De Pascale and Vasile.25 

 
dL

L dt





r
v   (2.121) 

Therefore, the formulation of the Cartesian velocity vector given by Eq. (2.121) is the same as from Betts (Eq. 

6.43, page 266).24 
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From the osculating modified equinoctial elements to Cartesian state map (Eqs. (2.120) and (2.122)) and the defi-

nition of the Cartesian position vector given in Eq. (2.5), the NKO elements  ,z   are derived as follows. 

  
2

sin cosz

r
z r h L k L

s
     (2.123) 

    
2 22 2 cos 2 sin sincos sin 2 cosx yr r L hk L L

r
L hk LL

s
           (2.124) 

After some algebraic manipulations of Eq. (2.124), the formulation for the orbital radius   is 

      
2

2 21 2 2 4 sicos n 2
r

h k L hk L
s

       (2.125) 

For the orbital angular velocity  , let us compute first the magnitude of the velocity vector. From Eq. (2.122), 

the magnitude of the velocity vector is 

 2 21 2 cos 2 sinv f g f L g L
p


       (2.126) 

Therefore, the formulation of the orbital angular velocity  is 
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Summary 
The inverse map from osculating modified equinoctial elements to NKOs elements described in Section 2.2.1.2 is 

summarized as 
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  (2.128) 

in which 
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2.2.1.3. Augmented Integrals of Motion 

The map from osculating augmented integrals of motion AIoMx  to Cartesian position and velocity is now derived. 

Let us recall here the following expressions that link the integrals of motion with the Cartesian position and velocity, 

which will be useful for the mathematical derivation of the inverse mapping. 

  h r v   (2.130) 

 
2 1v

r

 
  
 

e r   (2.131) 

The magnitude of the orbital angular momentum is 

  21p a e   h   (2.132) 

Therefore, the semi-major axis can be retrieved by Eq. (2.132). 
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  (2.133) 

Reminding us that the instantaneous position vector along the NKO corresponds always with either the apogee or the 

perigee of the osculating Keplerian orbit, the magnitude of the position vector is given by Eq. (2.134), in which the 

plus/minus sign is referred to the case of apogee/perigee, respectively. 
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The direction of the position vector is the same as that of the eccentricity, as shown in Eq. (2.131). However, there 

is an uncertainty on the sign of the position unit vector which is related to 
2 1

sgn
v

r

 
 

 
. 
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From Eqs. (2.134) – (2.135), the formulation of the Cartesian position vector is given by 
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  (2.136) 

The ambiguity on the sign in Eq. (2.136) due to the uncertainty on the apogee or perigee position can be solved by 

using the information given by the true longitude. That is, the difference between the true longitude and the longitude 

of perigee ( ) can be either null (if the spacecraft is at the perigee of the osculating orbit) or 180 deg (if the 

spacecraft if at the apogee of the osculating orbit). The longitude of perigee is given by the eccentricity unit vector as 

follows. 
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Therefore, apogee and perigee are defined as follows. 
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in which all the angles are considered to lie in the open interval  0,2 . 

From the definition in Eq. (2.138), the formulation of the Cartesian position vector in Eq. (2.136) can be rewritten as 
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From Eq. (2.130), because the radial component of the velocity is always zero for the NKOs considered, the mag-

nitude of the velocity vector is simply given by 
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The direction of the velocity is 
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Therefore, the expression of the velocity vector is given by 
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From the osculating augmented integrals of motion to Cartesian position vector map (Eq. (2.139)), and the defini-

tion of the Cartesian position vector given in Eq. (2.5), the parameters z  and   are derived as follows. 
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From the osculating augmented integrals of motion to Cartesian velocity vector magnitude map (Eq. (2.140)), and 

the definition of the Cartesian velocity vector given in Eq. (2.6), the parameter   is derived as follows. 
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Summary 
The inverse map from osculating augmented integrals of motion to NKOs elements described in Section 2.2.1.3 is 

summarized as 
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2.2.2. Sensitivity Analysis 

A sensitivity analysis has been performed in order to study the behavior of the mappings in the presence of errors 

in the osculating orbital elements. Only a numerical sensitivity analysis has been carried out by computing the values 

of the osculating elements from the perturbed input elements and then computing the errors with respect to the nominal 

values. 

Denoting with y  the set of elements chosen to describe the osculating Keplerian orbit, the parameters used to test 

the sensitivity of the mapping to uncertainties in the osculating orbital element iy  are as follows. 

 Absolute error of the vertical displacement due to uncertainties in the input elements. The absolute error 

has been chosen against the relative error because all the test cases under study are characterized by small 

vertical displacements. 

  , :
iz y z z z z z z          (2.147) 

 Relative error of the orbit radius due to uncertainties in the input elements. The relative error has been 

chosen against the absolute error because all the test cases under study are characterized by large orbit 

radii. 
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 Relative error of the orbital angular velocity due to uncertainties in the input elements. 
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2.2.3. Numerical Test Cases 

The same two sets of test cases described in Section 2.1.3 have been considered. Therefore, the description of such 

test cases is not repeated. Section 2.2.3.1 shows a validation of the inverse maps, whereas is Section 2.2.3.2 the sen-

sitivity analysis on the inverse maps is discussed. 

2.2.3.1. Forward and Inverse Mappings 

All the results of the test cases described in Section 2.1.3.1 have been numerically verified against the nominal 

values. That is, the osculating orbital elements have been obtained through the forward mappings starting from the 

nominal NKO elements  ,,
T

z   . Then, the inverse mappings are used to obtain the original NKO elements. The 

errors between the nominal values of the NKO elements and those obtained after the conversion give an estimate of 

the accuracy of both forward and inverse mappings. 

Figures 14, 15, and 16 show the absolute errors after forward and inverse mappings in out-of-plane displacement, 

orbit radius, and orbital angular velocity, respectively. It is clear that the errors after the forward and inverse mappings 

are negligible. This validates both the forward and inverse mappings. 
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Figure 14. Absolute error in the out-of-plane dis-

placement after forward and inverse mappings. 

 

Figure 15. Absolute error in the orbit radius after 

forward and inverse mappings. 

 

Figure 16. Absolute error in the orbital angular velocity after forward and inverse mappings. 
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2.2.3.2. Sensitivity Analysis 

The same test cases taken into account for the sensitivity analysis of the forward mappings as described in Section 

2.1.3.2 have been considered here. 

The numerical sensitivity analysis has been performed as described in Section 2.2.2. 

The errors of the osculating classical Keplerian elements are considered fixed and constant, as follows. 

 

 

 

 

 

3

3

3

3

3

3

10 0.1%

10

10 0.1% of the maximum possible error - 0.18deg

10 0.1% of the maximum possible error - 0.18deg

10 0.1% of the maximum possible error - 0.18deg

10 0.1% of the ma

a

e

i









 

 

 

 



















 

 

 

   ximum possible error - 0.18deg











  (2.150) 

The errors of the osculating modified equinoctial elements are considered fixed and constant, as follows. 
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No sensitivity analysis has been performed in the case of augmented integrals of motion. This is because, as shown 

in Eq. (2.146), the augmented integrals of motion to NKO elements map is extremely sensitive to errors in both ec-

centricity vector and true longitude. The issue is not only the piecewise formulation per se but the fact that the formu-

lation takes into account only two points in the orbit, which are the apogee and perigee. If an error in either eccentricity 

vector or true longitude moves the point from the apogee/perigee, the inverse map fails. 

 

Results and discussion 
The sensitivity analysis study demonstrates that the planar elements (i.e. ,  ) of both mappings are robust to 

uncertainties in the osculating orbital elements. Both mappings of the out-of-plane displacement z  are robust to un-

certainties in the in-plane osculating elements. However, the out-of-plane displacement is very sensitive to errors in 

the out-of-plane osculating elements (i.e. inclination, if KEP are used, or out-of-plane MEE ,h k ). This is understand-

able if the Keplerian orbit has a small inclination and a large semi-major axis ( ~ GEOa r  in this case). 

For the sake of conciseness, only the most interesting plots of the sensitivity analysis study are shown here. Table 

7 and Table 8 show a summary of the numerical results of the sensitivity analysis study in the case of KEP and MEE, 

respectively. The three test cases taken into account are those described in Eqs. (2.99) – (2.101). 
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Table 7. Summary of the results of the sensitivity analysis study in the case of classical Keplerian elements.* 

Uncertainty Test case z    
  

a  

1  ~ 150 m 0.1%  

0.1%  0.15%  2 0  

3  <0.1 m 0.1%  

e  

1  ~ 150 m 0.1%  0.1%  
~ 0.2%  

The three test cases are 

numerically different. 

2 0  0.101%  

3  <0.1 m 0.1%  0.1%  

i  

1 ~ 130 km  31.6 10 %  31.6 10 %  

2 130 km  45 10 %   45 10 %   

3 ~ 130 km  45 10 %  45 10 %  

  

1 ~ 0  0  0  

2 0  ~ 0  ~ 0  

3  ~ 0 0.001%  0  0  

  

1  4~ 0.7 m 5 10 %  
~ 0  

The three test cases are 

numerically different. 

~ 0  

The three test cases are 

numerically different. 

2 0  

3  3~ 10  m 0.002%  

  

1  4~ 0.7 m 5 10 %  0  ~ 0  

2 0  65 10 %  510 %  

3  3~ 10  m 0.002%  0  0  

* Note that sometimes ~0 is used against 0. This is done to stress the difference between a null value and a very small (numerical) value. 

 

Figure 17 shows the evolution of the out-of-plane displacement z  over one orbit obtained from the classical Kep-

lerian elements. The three test cases are shown. Both the nominal value and a 0.1% error in the inclination are consid-

ered. It is shown how a small error in inclination can cause a large error in the out-of-plane displacement. Figure 18 

shows the relative error evolution of the orbit radius   over one orbit obtained from the classical Keplerian elements. 

The three test cases are shown. A 0.1% error in the inclination is considered. It is shown how an error in inclination 

does not affect the orbit radius. 
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Figure 17. Out-of-plane displacement. Nominal case 

and 0.1% error in inclination. 

 

Figure 18. Relative error of the orbit radius in case of 

0.1% error in inclination. 

 

Table 8. Summary of the results of the sensitivity analysis study in the case of modified equinoctial elements.* 

Uncertainty Test case z    
  

p  

1  ~ 150 m 0.1%  

0.1%  0.15%  2 0  

3  <0.1 m 0.1%  

f  

1  ~ 150 m 0.1%  

0.1%  0.2%  2 0  

3  <0.1 m 0.1%  

g  

1  ~ 150 m 0.1%  

0.1%  0.2%  2 0  

3  <0.1 m 0.1%  

h  
1 

85 km  

310 %  310 %  

2 – 3 42 10 %   42 10 %   

k  
1 

85 km  

310 %  310 %  

2 – 3 42 10 %   42 10 %   

L  

1  4~ 0.7 m 5 10 %  ~ 0  ~ 0  

2 0  65 10 %  510 %  

3  5~ 0 8 10 %  ~ 0  ~ 0  

* Note that sometimes ~0 is used against 0. This is done to stress the difference between a null value and a very small (numerical) value. 
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Figure 19 shows the relative error evolution of the orbit radius   over one orbit obtained from the MEE with a 

0.001 error in the in-plane element f . The three test cases are shown. It is shown that the relative error on the orbit 

radius is at most the same order of magnitude as the initial uncertainty itself. Figure 20 shows the evolution of the out-

of-plane displacement z  over one orbit obtained from the MEE. The three test cases are shown. Both the nominal 

value and a 0.001 error in the out-of-plane element h  are considered. It is shown how a small error in the out-of-plane 

element can cause a large error in the out-of-plane displacement. 

 

Figure 19. Relative error in orbit radius in case of 

0.001 error in the in-plane element f. 

 

Figure 20. Out-of-plane displacement. Nominal case 

and 0.001 error in the out-of-plane element h. 

 

2.2.4. Osculating Orbital Elements to Non-Keplerian Orbit Map: Summary 

A summary of advantages and drawbacks of the inverse mappings investigated in this study is shown in Table 9. 

Table 9. Osculating orbital elements to non-Keplerian orbit map. Summary of advantages and drawbacks of the chosen 

mappings. 

 Classical Keplerian elements 
Modified equinoctial 

elements 

Augmented integrals of 

motion 

Advantages 

 Easy to understand 

 Easy formulation 

 Robust to uncertainties 

 Easy formulation 

 Robust to uncertainties on 

in-plane elements 

 

Drawbacks 

 Out-of-plane displacement 

very sensitive to uncertainties 

on inclination 

 Out-of-plane displacement 

very sensitive to uncertain-

ties on out-of-plane ele-

ments 

 Piecewise formulation 

 Extremely sensitive to er-

rors in both eccentricity vec-

tor and true longitude to the 

point that the map fails if 

there is an error in either ec-

centricity or true longitude 

  

DISTRIBUTION A. Approved for public release: distribution unlimited.



Osculating Keplerian Elements for Highly Non-Keplerian Orbits – Final technical report 

A. Peloni, C. R. McInnes, M. Ceriotti Page 46 

2.3. Determination of Spacecraft Thrust-Induced Acceleration 

The magnitude and direction of the spacecraft thrust-induced acceleration used to generate families of non-Kep-

lerian orbits have been extracted from the inverse mapping from the orbital elements discussed in Section 2.2. This 

has been achieved by using the NKO geometric properties derived from the inverse mapping as inputs to existing 

analysis of the dynamics of non-Keplerian orbits.2 This analysis links the thrust-induced acceleration to the non-Kep-

lerian orbit geometry. 

The following sub-sections show the analytical expressions obtained for the thrust-induced acceleration if either 

the classical Keplerian elements or the modified equinoctial elements are used to describe the osculating Keplerian 

orbit. Because of the very poor robustness of the augmented integrals of motion shown in Section 2.2.1.3 for the 

inverse mapping, these elements have not been considered in the study of the thrust-induced acceleration. 

2.3.1. Classical Keplerian elements 

From Eq. (2.1) and using the mappings shown in Eq. (2.118), the thrust-induced acceleration and the thrust pitch 

angle are obtained as 
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in which 
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2.3.2. Modified equinoctial elements 

From Eq. (2.1) and using the map shown in Eq. (2.128), the thrust-induced acceleration and the thrust pitch angle 

are obtained as 
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in which q , s , and   are defined in Eq. (2.119), whereas 2  is 

      2

2

2
2 cos 2 41 n 22 siL hkh Lk        (2.157) 
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2.3.3. Numerical Test Cases 

The same two sets of test cases described in Section 2.1.3 have been considered here. Therefore, the description 

of such test cases is not repeated. 

As noted earlier, the NKOs generated by the thrust-induced acceleration shown in Eq. (2.1) correspond to circular 

orbits displaced above the central body, viewed from an inertial frame of reference. Therefore, a displacement below 

the central body is not explicitly taken into account. This is because the tangent of the thrust pitch angle, rather than 

the pitch angle itself, is given. Therefore, there is an ambiguity in the thrust pitch angle. This can be solved algorith-

mically by checking the sign of the out-of-plane displacement, so that 

 
 

 

1

1

tan tan if 0

tan tan if 0

z

z




 





 
 

 
  (2.158) 

The acceleration, in terms of magnitude and pitch angle, resulting from both Eqs. (2.152) – (2.153) and Eqs. (2.155) 

– (2.156), has been validated using two separate checks. In the first check, the values of acceleration magnitude and 

pitch angle are compared with those given directly by using Eq. (2.1). The values of both acceleration magnitude and 

the direction of the acceleration have been verified for all test cases considered with both sets of elements. The errors 

in the magnitude and direction of the acceleration are 9 22 10 mm s  a  and 1010  rad  , respectively. The 

second check has been carried out by propagating the equations of motion with the propulsive acceleration given by 

Eqs. (2.152) – (2.153) and Eqs. (2.155) – (2.156), respectively. The relative errors in position vector and velocity 

vector between the initial state and the state after one orbital period are used to validate the acceleration. A variable 

order Adam-Bashford-Moulton PECE solver (as implemented in MATLAB ode113) with relative and absolute toler-

ances equal to 1010  and 1210 , respectively, has been used for the propagation of the equations of motion. The errors 

in the final position and velocity are 87 10  r r  and 710 v v , respectively. 

Figure 21 shows the Type 1 NKOs described in Eq. (2.93) together with the acceleration vector required. The 

acceleration is clearly shown to be always directed along the vertical axis. Figure 22 shows the in-plane Type 3 NKOs 

described in Eq. (2.97) together with the acceleration vector required. In this case, it is clear how the propulsive 

acceleration is used to balance the gravitational attraction of the primary body. In the case of GEOr  , for instance, 

the NKO is slower than a Keplerian orbit with the same radius. The spacecraft, in this case, must thrust in the radial 

direction to balance the gravitational force and be able to move at the desired angular velocity. 
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Figure 21. Type 1 NKOs and acceleration (not to 

scale) needed with GEO shown (dashed cyan line). 

 

Figure 22. In-plane displaced Type 3 NKOs and ac-

celeration (not to scale) needed with GEO shown (dashed 

cyan line). 

As noted in Section 2.1.3.1 when the test cases used to verify the mappings have been introduced, these cases have 

been chosen for ease of illustration with the only purpose to verify the validity of the mappings and study the behavior 

of the osculating elements. That is, such test cases were not meant to be examples of feasible missions. This is evident 

if the magnitude of acceleration required is considered. The accelerations required for the test cases shown in Section 

2.1.3.1 have magnitudes   260,200  mm sa , which clearly are too large for a conventional low-thrust spacecraft. 

However, the test cases described in Section 2.1.3.2 for the study of the sensitivity analysis have been chosen as 

feasible mission scenarios. The accelerations required for this second set of test cases have magnitudes 

4 24 10 ,  2.3  mm s   a . Considering a 1000-kg spacecraft, such acceleration can be easily converted into a max-

imum thrust 
44 10 ,  2.3  NmaxT      that are feasible accelerations for near-term low-thrust technology.26 
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3. Generalized Model: No Assumptions on Orbital Plane 

The mappings derived in Section 2 are related to non-Keplerian orbits whose orbital plane is parallel to the ˆ ˆX Y  

plane in a Cartesian reference frame (i.e. the equatorial plane, in this work). A generalized mapping for the direct 

problem is here investigated, for example where the orbit plane can be rotated relative to the Earth’s equatorial plane. 

 

 

Figure 23. Sketch of a displaced orbit with thrust-induced acceleration. Generalized model. 

 

Two extra elements are introduced for the description of the non-Keplerian orbit in the three-dimensional space, 

as shown in Figure 23. These are 

 
Inclination of the non-Keplerian orbit

Right ascension of the ascending node of the non-Keplerian orbit

j







  (3.1) 

Note that the symbols  ,j   have been used for the description of the NKO elements inclination and right ascen-

sion of the ascending node (RAAN) because these elements do not have to be confused with the osculating inclination 

and RAAN, respectively. Therefore, the set of generalized NKO elements is  , ,, ,
T

NKO z j  x . 

3.1. Forward Map: Non-Keplerian Orbit to Osculating Orbital Elements 

The formulation of the Cartesian position and velocity vectors shown in Eqs. (2.5) – (2.6) can be generalized, 

considering inclination and RAAN, as 

 

    
    

 

cos cos cos sin sin sin sin

sin cos cos cos sin sin cos

sin sin cos

t j t z j

t j t z j

j t z j

     

     

 

 
 

  





  



 



r   (3.2) 

 

   

   

 

cos sin cos sin cos

sin sin cos cos cos

sin cos

t j t

t j t

j t

   

    



 
 

  
 










v   (3.3) 
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The orbital angular momentum h  can be computed by using the aforementioned expressions of position and ve-

locity as 

 

   

   

 

sin sin cos cos cos sin sin

sin cos sin cos cos cos sin

cos sin sin

j z t z j t

z t j z j t

j z j t

     

      

 

 
 

 

 

 



  
 
 

h r v   (3.4) 

Following the same procedure used to obtain the mappings in the simplified case, the generalized mappings from 

NKO elements to osculating orbital elements are obtained. Because of the very poor robustness of the osculating 

AIoM for the inverse mapping, these elements have not been considered in this study. 

In the following sub-sections, the generalized forward mappings from non-Keplerian orbit to osculating orbital 

elements are derived for the two sets of elements considered.  

3.1.1. Classical Keplerian Elements 

Starting from the Cartesian state vector (Eqs. (3.2) – (3.3)), the mapping from generalized NKO elements 

 , , ,,
T

z j    to osculating classical Keplerian elements is obtained as described in Algorithm 4.2 from Reference 

22. 

1. Inclination ( i ) 

  
 

2 2

cos sin si
ˆ ˆarccos arccos

nj t
i

z

z j 



 
 


 

  

h Z   (3.5) 

Note that, if the NKO orbital plane is parallel to the equator, Eq. (3.5) becomes the following, which is the de-

scription already obtained in the simplified case (Eq. (2.23)). 

   
2 2

ˆ ˆarccos 0 arccosi j
z





 
    
  

h Z   (3.6) 

 

2. Right Ascension of the Ascending Node ( ) 

The line of the nodes shall be defined in order to find the expression for the right ascension of the ascending node. 

The line of the nodes is defined as 

 

    
    

sin cos cos cos sin sin
ˆˆ 1ˆ c

cos

sin sin cos os
ˆˆ

0

sin sin cos

j z j t t

j z j t
N

t

     

     

 
 

   
 

 



 


Z h

N
Z h

  (3.7) 

in which 

     
22 2 sin cos sicos nt j z tN z j       (3.8) 

It is important to note that the line of the nodes is not defined in the case of a planar orbit with the orbital plane 

parallel to the equatorial plane (i.e. 0z j  ). Therefore, the line of the nodes, in this case, is arbitrarily chosen to 

point in the X̂  direction. Therefore, the general formulation of the line of the node is 
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 

 
    
    

1

0 if 0 0

cos 0
ˆ sin

sisin cos cos cos sin cos

s

n
0 1

cin sin cos sin si os otherwise

0

n cos

j z j t t

j z
N

j t

j

t

z

     

     

  
  

    
      

     
       
  
   








N   (3.9) 

Note that, if the NKO orbital plane is parallel to the equator and 0z  , Eq. (3.9) becomes the following. 

  

   

   

cos

ˆ 0 co

sin sin cos

cs os sin si

0

n

t t

t t
z

j
z

   

   





 
 

   
 
 

N   (3.10) 

Because the NKO RAAN   is not defined for 0j  , it can be arbitrarily set to zero and Eq. (3.10) becomes the 

following, which is the description already obtained in the simplified case (Eq. (2.10)). 

 

 

 

sin

cosˆ

0

z
t

t
z





 
 

  
 
 

N   (3.11) 

The right ascension of the ascending node is simply given by 

   *

0 if 0 0
ˆ ˆarctan

otherw
ˆ,

i
ˆ

se

z j  
     


X YN N   (3.12) 

in which 

 

          * arctan sin cos cos cos sin cos , sin sin cos sin sin cossin cosj z j t t j z j t t               

  (3.13) 

Note that the term 1 N  has been neglected in Eq. (3.13) because it is always a positive value. 

Note that, if 0z   but 0j  , the osculating RAAN equals that of the NKO: 

  0z      (3.14) 

On the other hand, if the NKO orbital plane is parallel to the equator, Eq. (3.12) becomes Eq. (3.15), which is the 

description already obtained in the simplified case (Eq. (2.23)). 

  
        

0 if 0
0

arctan sin sgn , cos sgn otherwise

z
j

t z t z


 


    


  (3.15) 

Considering that it is arbitrarily chosen that 0   for a NKO with the orbital plane parallel to the equatorial plane, 

Eq. (3.12) could simply be rewritten as 
*  , taking into account Eq. (3.14). However, it can be seen that 

    * 0 arctan 0,0j z     (3.16) 

Numerically, Eq. (3.16) often assumes the zero value but the expression in Eq. (3.16) is indefinite, if solved analyti-

cally. Moreover, if one wants to compute the limits to find the exact analytic value of Eq. (3.16), it can be demonstrated 
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that the limits are different depending on the order of the limits themselves. If the previous statement is true, the 

following holds. 

    *

0 0 0 0

*lim lim lim lim
j z z j   

    (3.17) 

If Eq. (3.17) is true, it means that    * 0 arctan 0,0j z    is indeterminate and, therefore, the general analyt-

ical expression for the osculating right ascension of the ascending node is the one given in Eq. (3.12). 

The left-hand side of Eq. (3.17) is 

     *

0 0 0
lim lim lim arct sin cos , sin sinan
j z j

j j    
  

     (3.18) 

Note that the second limit in Eq. (3.18) has been solved using the L’Hopital’s rule. The right-hand side of Eq. (3.17) 

is 

 

             
        

         
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00 0
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2 2

jz z
z t t t t

t t t t

t t t t

z       

       

         

  
   

 

  

 

      

  (3.19) 

    
0 0 00

* *lim lim lim lim
2j j zz

t


  
   

         (3.20) 

Therefore, Eq. (3.20) demonstrates that the general analytical expression for the osculating right ascension of the 

ascending node is the one given in Eq. (3.12). 

Lastly, the term 
*  can be rewritten as 

 
 

 
*

arccos if 

2 arccos otherwis

0

e

x y

x

N N N

N N




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


  (3.21) 

in which 

 

    

    
    

22 2 sin cos sin

sin cos cos cos sin cos

sin sin cos s

cos

sin

coin sssin co

x

y

t j z j t

j z j t

N z

N t

j z j t tN

  

     

     


 




 
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  (3.22) 

 

3. Eccentricity ( e ) 

The eccentricity vector is given by 

 ˆ



  

v h
e r   (3.23) 

Using the vector triple product rule and remembering that 0rv  , the expression of the eccentricity vector in Eq. 

(3.23) can be rewritten as 
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 
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 
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e r   (3.24) 

Therefore, the value of the eccentricity is given by the norm of the eccentricity vector, as 

 

2 2 2 2z
e

   







  (3.25) 

Note that a circular planar Keplerian orbit is characterized by 
2 3   , which satisfies the zero-eccentricity 

condition. However, the eccentricity vector is not defined in this case and this is an issue in the following computation 

of the true anomaly. Therefore, the eccentricity unit vector, in this case, is arbitrarily chosen to point in the X̂  direc-

tion. Therefore, the general formulation of the eccentricity vector is 
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e   (3.26) 

 

4. Semi-major axis ( a ) 

The semi-major axis is given by 

 
 

2 2 2

2 2 2 2 21 2

z

e
a

z

 

    

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h
  (3.27) 

 

5. Argument of perigee ( ) 

The argument of perigee is given by 

 
 

 

ˆ ˆarccos if 

ˆ ˆ2 arccos

0
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 






 



N e
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  (3.28) 

After algebraic manipulations and arbitrarily choosing 0   in the case of osculating circular orbit, the general 

expression for the argument of perigee is 

     
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  (3.29) 

in which 
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 
 

  
 
 








  (3.30) 

Note that, if the NKO orbital plane is parallel to the equator and 0z  , Eq. (3.29) becomes the following, which 

is the description already obtained in the simplified case (Eq. (2.23)). 
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

  (3.31) 

If the NKO orbital plane is parallel to the equator and 0z  , Eq. (3.29) becomes the following, which is the 

description already obtained in the simplified case (Eq. (2.23)). 
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
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  (3.32) 

Note that Eq. (3.31) has been obtained by simply substituting 0j   within Eq. (3.29). On the other hand, Eq. 

(3.32) has been obtained by computing two limits. Therefore, the general complete expression for the argument of 

perigee is given by unifying Eqs. (3.29) and (3.32), as follows. 
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 




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
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  (3.33) 

 

6. True anomaly ( ) 

The true anomaly is given by 

   ˆ ˆcos   e r   (3.34) 

In the case of a circular planar Keplerian orbit, Eq. (3.34) becomes the following. This is due to the choice of the 

eccentricity vector shown in Eq. (3.26). 

    cos cos t t        (3.35) 

On the other hand, a NKO is characterized by the expression of the true anomaly given as 

   2 2 2 2arccos sgn z         (3.36) 

Eq. (3.36) becomes 

 

2 2 2 2

2 2 2 2

0 if 

if 

z

z

   


    

 









  (3.37) 
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Note that the case  2 2 2 20z z      is not taken into account inside Eq. (3.37). From Eq. (3.36), it can 

be seen that  2 2 2 20 2z z        . However, it does not exist any case for which 2 2 2 2z      

if 0z  , i.e. there are no osculating circular orbits for non-Keplerian orbits. Therefore, the general expression for the 

true anomaly can be rewritten by unifying Eqs. (3.35) and (3.37) as 
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0 if 
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   
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 




  (3.38) 
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Summary 
The generalized forward map from NKOs to osculating classical Keplerian elements described in Section 3.1.1 is 

summarized as: 
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  (3.39) 

in which 
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  (3.40)  
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3.1.2. Modified Equinoctial Elements 

Starting from the expressions of the Cartesian position and velocity vectors (Eqs. (3.2) – (3.3)), the orbital angular 

momentum (Eq. (3.4)) and the analytical map of the osculating classical Keplerian elements described in Section 3.1.1 

(Eq. (3.39)), a map of the osculating MEE from Cartesian position and velocity is derived. 

1. Semi-latus rectum ( p ) 

 
 2 2 2 2 2z

p
  

 


 

h
  (3.41) 

 

2. In-plane element ( f ) 

In order to derive the general formulation for the in-plane element f , let us first consider the case of zero-dis-

placement orbits (i.e. 0z  ). 

From the formulation of   shown in Eq. (3.39), the value of the right ascension of the ascending node for a zero-

displacement orbit is simply 

 
0z




    (3.42) 

From the formulation of   shown in Eq. (3.39) and noting that sin 0j   always, the value of the argument of 

perigee for a zero-displacement orbit is 
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  (3.43) 

From Eqs. (3.42) – (3.43), the value of the longitude of perigee  
0z




  is 
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  (3.44) 
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  (3.45) 

From Eq. (3.45) and remembering the expression of the eccentricity shown in Eq. (3.39), the expression of the in-

plane element f  for a zero-displacement orbit is 

    
2 3

0 0
cos cos

z z
ef t

  
  
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       (3.46) 
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f t t

  
   




      (3.47) 

If the NKO orbital plane is parallel to the equator (i.e. 0j   but also 0  ), the same procedure described in 

Section 2.1.1.2 can be used to obtain 

  
2 2 2 2

0
cos

j

z
tf

   




 
   (3.48) 
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Note that, if the orbital plane is parallel to the equator and 0z  , Eqs. (3.47) and (3.48) are equivalent. 

Let us consider now a displaced orbit. From the formulation of   shown in Eq. (3.39), the value of the right 

ascension of the ascending node for a displaced orbit is 

 *

0z
    (3.49) 

From the formulation of   shown in Eq. (3.39), the value of the argument of perigee for a displaced orbit is 
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  (3.50) 

in which   has been defined in Eq. (3.40). 

From Eqs. (3.49) – (3.50) and recalling that    arccccos sa or x x   , the value of the cosine of the longitude 

of perigee  
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  (3.51) 

From Eq. (3.51) and remembering the expression of the eccentricity shown in Eq. (3.39), the expression of the in-

plane element f  for a displaced orbit is 

 
    

    

2
*

2 2

0 *

2 if cos sin scos arccos

cos arcco

in 0

if cos sin sins 0
z

z j j tz
f

z j j t

     

   


     

  


 



  (3.52) 

Note that, if 0z  , Eq. (3.52) becomes Eq. (3.47). On the other hand, if 0j  , Eq. (3.52) becomes Eq. (3.48), which 

is the expression found in the simplified case (Eq. (2.76)). This can be easily demonstrated as follows. 

Let us first consider the 0z   case. It can be seen that 
0

0
j



 . That is, Eq. (3.52) becomes 
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  (3.53) 

As demonstrated in Eq. (3.19), 
*

0
2

j
t  


    if 0z  . Following the same procedure, it can be demon-

strated that the following holds. 
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  (3.54) 
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Substituting Eq. (3.54) into Eq. (3.53) and recalling that it is arbitrarily chosen that 0   if 0j  , the expression 

of the in-plane element f  becomes the same as that shown in Eq. (3.48). 

Let us consider now the 0z   case. It can be seen that  
0

cos
j z

t 
 

 . Recalling that 
0

0
j z 

   (Eq. (3.39)), 

Eq. (3.52) becomes Eq. (3.48). 

Therefore, the general expression for the in-plane element f  is 
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  (3.55) 

It is important to note that Eq. (3.55) is a piecewise formulation characterized by nested direct and inverse trigo-

nometric functions. Moreover, 
*  itself is defined through a piecewise law (Eq. (3.40)). For these reasons, an alter-

native formulation can be found, after some mathematical manipulations, as follows. 

Using the same nomenclature used for * ,   can be rewritten as 
N


  . That is, 

   2 2sin cos zj t      (3.56) 

Taking into account the second condition in Eq. (3.55) and the condition 0yN  , the expression for the in-plane 

element f  is 
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  (3.57) 

Let us recall some useful relations between trigonometric functions. 
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  (3.59) 

   1
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2
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1
x

x
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

  (3.60) 

Using Eqs. (3.58)-(3.59) and after some algebraic manipulations, the following relation can be obtained. 
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  (3.61) 

Applying Eq. (3.60) to Eq. (3.61), the following can be obtained. 
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DISTRIBUTION A. Approved for public release: distribution unlimited.



Osculating Keplerian Elements for Highly Non-Keplerian Orbits – Final technical report 

A. Peloni, C. R. McInnes, M. Ceriotti Page 60 

Following the same procedure described in Eqs. (3.57) – (3.62), the formulation of the in-plane element f  can be 

rewritten as 
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2 2

2 2 2 2

2

2 2 2

2 2

2

if 0 0

if cos sin sin 0

if cos sin

c

i

o

s n 0

s

x x y

x x y

t z j

z
N N N N z j

N

f N j t
N

N N N N z j j tN



   
   



   





  
    

 

  

 



   


  (3.63) 

The formulation of the in-plane MEE f  shown in Eq. (3.63) is free from any nested direct and inverse trigono-

metric function. Nevertheless, this formulation is not any simpler than the one shown in Eq. (3.55). Moreover, from a 

numerical point of view, the computation of the latter is faster. For these reasons, Eq. (3.55) is considered as the final 

formulation of the in-plane MEE f . 

 

3. In-plane element ( g ) 

As for the case of the in-plane element f , let us derive the general mapping for the in-plane element g  consid-

ering the in-plane and out-of-plane orbits separately at first. In order to derive the general formulation for the in-plane 

element g , let us first consider the case of zero-displacement orbits (i.e. 0z  ). 

From Eq. (3.44), the value of the longitude of perigee  
0z




  is 

  
2 3

2 30

if 

if z

t

t

    


     

  
  

  
  (3.64) 

  
 

 

2 3

2 30

sin if 

s
si

n f
n

i i  z

t

t

    


    

  


 
 





  (3.65) 

From Eq. (3.65) and remembering the expression of the eccentricity shown in Eq. (3.39), the expression of the in-

plane element g  for a zero-displacement orbit is 

    
2 3

0 0
sin sin

z z
eg t

  
  

 


       (3.66) 

    
2 3

0
cos cs os sinin

z
g t t

  
   




      (3.67) 

If the NKO orbital plane is parallel to the equator (i.e. 0j   but also 0  ), the same procedure described in 

Section 2.1.1.2 can be used to obtain 

  
2 2 2 2

0
sin

j

z
tg

   




 
   (3.68) 

Note that, if the orbital plane is parallel to the equator and 0z  , Eqs. (3.67) and (3.68) are equivalent. 

Let us consider now a displaced orbit. Following what have been done for the case of the in-plane element f , the 

value of the sine of the longitude of perigee  
0

sin
z




  is 
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  

    

    

    

  

* 2 2

* 2 2

0 *

2 2

2 2

2 2

2

2 2

* 2 22

sin arccos if cos sin sin 0

sin arccos if cos sin s

0

0
sin

in 0

sin arccos if cos sin sin 0

sin arccos if cos s

0

0 in sin

z

z z j j t

z z j j t

z z j j t

z z j j

      

      


      

     



    

     
 



  

  

  



  



 

    0t








 


  (3.69) 

From Eq. (3.69) and remembering the expression of the eccentricity shown in Eq. (3.39), the expression of the in-

plane element g  for a displaced orbit is 

 
    

    

2
*

2 2

0 *

2 if cos sin ssin arccos

sin arcco

in 0

if cos sin sins 0
z

z j j tz
g

z j j t

     

   


     

  


 



  (3.70) 

Note that, if 0z  , Eq. (3.70) becomes Eq. (3.67). On the other hand, if 0j  , Eq. (3.70) becomes Eq. (3.68), which 

was found in the simplified case (Eq. (2.76)). The demonstration of this follows the same steps shown in the case of 

the in-plane element f . 

Therefore, the general expression for the in-plane element g  is 

 

 

    

    

2 22 2

*

*

sin

sin arc

if 0 0

if cos sin sin 0

if cos si

cos

sin arccos n sin 0

t z j
z

z j

j

g j t

z j t


   

  


  


  

 

  

  

  






  (3.71) 

As for the in-plane element f , it can be noted that Eq. (3.55) is a piecewise formulation characterized by nested 

direct and inverse trigonometric functions. Nevertheless, it can be demonstrated that a procedure similar to that for 

the in-plane element f  does not simplify the formulation. Therefore, such a mathematical derivation is not shown 

here for the sake of conciseness and Eq. (3.71) is considered as the final formulation for the in-plane MEE g . 

 

4. Out-of-plane element ( h ) 

Before deriving the expression for the out-of-plane element h , let us recall the following identity. 

 
 

 

1 cos
tan

2 sin

xx

x

 
 

 
  (3.72) 

Recalling the formulation of the inclination shown in Eq. (3.39) as 
 

2 2

cos
arcc

s
o

n
s

si inj z j t
i

z

 



 
 
  




 , the ex-

pression of  tan 2i  is, therefore, given by 
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 

 

 

  

2 2

2 2

2 2

22 2 2 2

1

tan
2

s

cos sin sin

cos sin sin

cos sin sin

cos sin s

in arcco

 
i

 
n

s

1  

j z j t

j z j

zi

z

z

z z

t

j z j t

j z j t

 



 



  

   


 

  
   
  

    

  
   
   







  

  (3.73) 

 
  

  

2 2

22 2

cos sin sin

cos sin si

t n

n

a
2

j z jzi

z

t

j z j t

  

  

 
  

   

 
  (3.74) 

Noting that the denominator of Eq. (3.74) can be rewritten as    2 2A B A B A B     , Eq. (3.74) can be 

simplified as 

 
  

  

2 2

2 2
ta

cos sin sin

co
n

in2 s sin s

j z jzi

z

t

j z j t

  

  

 
 

 



 


  (3.75) 

From Eq. (3.75) and recalling the value of 

  
    

    
22 2

sin cos cos cos sin cos

sin cos sin

1 if 0 0

cos
sin

otherwise

cos

j z j t t

t

z j

z j z j t

     

  







  




 





  (3.76) 

introduced in Eq. (3.9), the expression of the out-of-plane element h  is 

 

  

       

    

2 2

2 2

22 2

cos sin sin

sin cos cos cos sin coscos sin sin

sin cos si

1 if 0 0

sin
otherwise
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j z j t

j z j t tj z j

z j

z

t

t jz z t

z

j

h
  

       

  


  

 
 

  

















   

  (3.77) 

Note that the piecewise formulation in Eq. (3.77) can be removed by performing the two-variable limit, as follows. 

Let us consider only the second branch of Eq. (3.77) to demonstrate that 

 
   , 0,0

lim 0
z j

h


   (3.78) 

First, let us rewrite the two variables ,z j  in polar coordinates as 

 
s

sin

coz r

rj





 



  (3.79) 

Using Eq. (3.79), the second branch of Eq. (3.77) becomes 
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     

     

        

        
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2
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r r r r t

r r r r t
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h

r t r r r t
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      

        

      

 
 





 



 



  (3.80) 

The limit shown in Eq. (3.78) can be now re-written, using the transformations in Eq. (3.79), as 

 
0

l m 0i
r

h


   (3.81) 

It can be easily demonstrated that Eq. (3.81) is verified for any value of   and, therefore, the two-variable limit 

shown in Eq. (3.78) is verified as well. 

Considering that 
   , 0,0

lim 0
z j

h


 , the expression of the out-of-plane element h  is simply 

 
  
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        

     

 
 

 

  

 

  (3.82) 

 

5. Out-of-plane element ( k ) 

As computed in Eq. (3.75) for the out-of-plane element h , the expression of  tan 2i  is 

 
  

  

2 2

2 2
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cos sin sin
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in2 s sin s
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 
 

 
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 


  (3.83) 

From Eq. (3.83) and recalling the value of 

  
    

    
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0 if 0 0
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t
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





  




 

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

  (3.84) 

introduced in Eq. (3.9), the expression of the out-of-plane element k  is 

 

  

       
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z
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k
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  
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  
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 
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


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  (3.85) 
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Note that the piecewise formulation in Eq. (3.85) can be removed by performing the two-variable limit, as demon-

strated for the out-of-plane element h . Let us consider only the second branch of Eq. (3.85) to demonstrate that 

 
   , 0,0

lim 0
z j

k


   (3.86) 

First, let us rewrite the two variables ,z j  in polar coordinates as 

 
s

sin

coz r

rj





 



  (3.87) 

Using Eq. (3.87), the second branch of Eq. (3.85) becomes 
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      

 
 
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 

 

 

  (3.88) 

The limit shown in Eq. (3.86) can now be re-written, using the transformations in Eq. (3.87), as 

 
0

l m 0i
r

k


   (3.89) 

It can be easily demonstrated that Eq. (3.89) is verified for any value of   and, therefore, the two-variable limit 

shown in Eq. (3.86) is verified as well. 

Considering that 
   , 0,0

lim 0
z j

k


 , the expression of the out-of-plane element k  is simply 
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 
 

 

  
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  (3.90) 

 

6. True longitude ( L ) 

In order to derive the general formulation for the true longitude L , let us consider the two cases 0z   and 0z 

, respectively. 

From the formulations of   and   shown in Eq. (3.39), the value of the longitude of perigee  
0z




  is 

  

2 3

2 3

0

2 3

if 

if 

if 
z

t

t

   

     

     


 


   
   

  (3.91) 

Therefore, the value of the true longitude in the case of zero-displacement NKO is obtained from Eqs. (3.39) and 

(3.91) as 

 
0z

L t 

    (3.92) 
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Let us consider now a displaced orbit. From Eqs. (3.49), (3.50), and (3.39) and recalling that 

   arccccos sa or x x   , the value of the true longitude for an out-of-plane displaced orbit is 

 
   

   

*

*0

arccos if cos sin sin 0

arccos if cos sin sin 0z

z j j t

j
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z j t
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  

  
 

  




  (3.93) 

It is possible to demonstrate that Eq. (3.93) becomes Eq. (3.92) in the case of zero-displacement orbit. However, 

the case of zero-displacement NKOs with the orbital plane parallel to the equator must be treated in a different way, 

as demonstrated in the calculation of the right ascension of the ascending node and shown in Eq. (3.39). Therefore, 

the general expression for the true longitude is 

    

   

*

*

if 0 0

arccos if cos sin sin 0

arccos if cos sin sin 0

t z j
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  

  

   


    
   

  (3.94) 

An alternative formulation for the true longitude can be obtained which does not involve inverse trigonometric 

functions, as described in the case of the in-plane element f . However, as discussed for the in-plane modified equi-

noctial elements, it can be demonstrated that such a formulation does not further simplify what has already been 

obtained. 

 

Summary 
The generalized forward map from NKOs to osculating modified equinoctial elements described in Section 3.1.2 

is summarized as: 
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  (3.95) 

in which 
*  and   are defined in Eq. (3.40).  
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3.1.3. Numerical Test Cases 

Three scenarios have been tested in order to both verify the validity of the mappings shown in Sections 3.1.1 – 

3.1.2 and study the behavior of the osculating elements. The three test cases have been chosen to be feasible mission 

scenarios in the near future. For this reason, only small-displacement non-Keplerian orbits are taken into account, 

which can be generated with current or near-term technology. All results of the test cases have been numerically 

verified by means of MATLAB functions. 

In the following sub-sections, all the test cases taken into account are described and the mappings are shown and 

analyzed. 

3.1.3.1. Test cases 

1. Displaced GEO 

Figure 24 shows the orbits (not to scale) of all the test cases taken into account related to the GEO case. The value 

of the displacement is set to 35 km  for both in-plane and out-of-plane displacements so that the spacecraft hovers 

above/below or inside/outside the GEO station-keeping box.12 

 

Figure 24. Earth-centered view (not to scale) of the orbits of all the case studies taken into account for the GEO case. 

The characteristics of the Keplerian GEO are shown in Eq. (2.92). The characteristics of the Type 1 NKO are as 

follows. 
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  (3.96) 

In this case, two values of   are considered so that both positive and negative out-of-plane displaced NKOs are 

taken into account. These values are considered such that the spacecraft in the non-Keplerian orbit hovers above the 

GEO station-keeping box, which is 70-km high.12 
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Two case studies are considered for Type 2 NKOs as well. 
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Two case studies are considered for Type 3 NKOs. Only an in-plane displacement is considered in this case. 
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2. Displaced global positioning system (GPS) 

Figure 25 shows the orbits (not to scale) of all the test cases taken into account related to the GPS case. The value 

of the displacement is set to 5 km for both in-plane and out-of-plane displacements so that the spacecraft hovers 

above/below or inside/outside the GPS spacecraft for visual inspection of the same. Moreover, a distance of 5 km can 

be considered within the range for proximity operations.27 

 

Figure 25. Earth-centered view (not to scale) of the orbits of all the case studies taken into account for the GPS case. 
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The orbit taken into account for describing the GPS is related to the PRN-06 satellite and its orbital parameters are 

accurate with respect to the Yuma Almanac 2016* (week 0896, GPS Time of Applicability 405504 s). PRN-06 has 

been chosen because is the one with the lowest value of eccentricity ( 30.22 10e   ) among the ones reported in the 

Yuma Almanac. 
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The characteristics of the Type 1 NKO are as follows. 
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In this case, two values of   are considered so that both positive and negative out-of-plane displaced NKOs are 

taken into account. These values are considered such that the spacecraft in the non-Keplerian orbit hovers 5 km 

above/below and outside/inside the GPS. 
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Two case studies are considered for Type 2 NKOs. 
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Two case studies are considered for Type 3 NKOs. Only the in-plane displacement is considered for Type 3 NKOs. 
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  (3.104) 

                                                           
* Data available online at https://celestrak.com/GPS/almanac/Yuma/2016/ [retrieved 25 October 2016]. 
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3. Displaced Sun-synchronous orbit (SSO) 

Figure 26 shows the orbits (not to scale) of all the test cases taken into account related to the SSO case. The value 

of the displacement is set to 1 km for both in-plane and out-of-plane displacements so that the spacecraft hovers 

above/below or inside/outside the SSO spacecraft for visual inspection of the same. Moreover, a distance of 1 km can 

be considered within the range for proximity operations.27 

 

Figure 26. Earth-centered view (not to scale) of the orbits of all the case studies taken into account for the SSO case. 

A circular Sun-synchronous orbit with a radius 1,000 kmSSOr   is considered. The value of the inclination can be 

easily computed considering the effect of 2J  as 
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The characteristics of Type 1 NKOs are as follows. 
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In this case, two values of   are considered so that both positive and negative out-of-plane displaced NKOs are 

taken into account. These values are considered such that the spacecraft in the non-Keplerian orbit hovers 1 km 

above/below and outside/inside the spacecraft in SSO. 
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Two case studies are considered for Type 2 NKOs. 
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Two case studies are considered for Type 3 NKOs. Only the in-plane displacement is considered for Type 3 NKOs. 
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3.1.3.2. Results and Discussion – Signatures of Non-Keplerian Orbit Families 

A summary of the key characteristics of the signature of the three NKO families is given in the following sub-

sections, one for each orbital element used. A detailed description of the evolution of each osculating element for each 

case study is not given here for the sake of conciseness. 

Note that, in the following sub-sections, all the sinusoidal curves are described as  cos t   in which   is a 

phase angle which is a function of inclination j , RAAN  , and osculating element taken into account. Furthermore, 

  represents the semi-amplitude of the cosine wave related to the element  . 

 

1. Non-Keplerian orbit to osculating Keplerian orbital elements map 

Semi-major axis and eccentricity do not show any special signature, being both constant in time. The only char-

acteristic that has been noted is that, in both cases, the in-plane displaced orbits have the largest difference respect to 

the Keplerian orbit. 
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The first key characteristic is seen in the mapping of the inclination. Two trends can be seen: 
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in which 
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The right ascension of the ascending node is characterized by three separate trends, as follows. 
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and 
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The argument of perigee is characterized by two separate trends, as follows. 
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Lastly, two trends can be seen for the true anomaly, as follows. 
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It is important to note that Eq. (3.120) shows that a spacecraft in a non-Keplerian orbit can only be either at the 

perigee or the apogee of its osculating Keplerian orbit, as it was already discussed in the simplified case. 

 

2. Non-Keplerian orbit to osculating modified equinoctial elements map 

Semi-latus rectum does not show any special signature, being constant in time. The only characteristic that has 

been noted is that, as for semi-major axis and eccentricity, the in-plane displaced orbits have the largest difference 

respect to the Keplerian orbit. 
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The first key characteristic is seen in the mapping of the in-plane element f. Two trends can be seen: 
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However, the magnitude of oscillation for the out-of-plane displaced cases is very small, as shown in the following. 
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The in-plane element g is characterized by two separate trends, as the previous element. 
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However, the magnitude of oscillation for the out-of-plane displaced cases is very small, with values comparable with 

those of the other in-plane element f . 

 

The out-of-plane element h is characterized by two separate trends, as follows. 
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The magnitudes of oscillations respect to the Keplerian value are 
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The out-of-plane element k is characterized by two separate trends, as the previous element. 
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The magnitudes of oscillations respect to the Keplerian value are 
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Lastly, one trend can be seen for the true longitude, as follows. 
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The absolute differences respect to the Keplerian value are 
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3.1.4. Non-Keplerian orbit to Osculating Orbital Elements Map: Summary 

of the Signatures 

The key characteristics that can provide a clear and reliable indication that a spacecraft is being forced along a 

non-Keplerian orbit are listed here. 

The signatures of NKOs on the osculating Keplerian orbital elements are the following. 

 

   

 

   

 

 
0

0

0

ifcos

co

 0 0

if 0 0

KEP :  if 0 0

if 0

s

 0

i t

t t

i t z j

z j

z

z

t t

t t

j

t

j

 



 

  

 



  

 

    


   


   
   











  (3.131) 

The signatures of NKOs on the osculating modified equinoctial elements are the following. 
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3.2. Inverse Map: Osculating Orbital Elements to Non-Keplerian Orbit 

A generalized formulation of the inverse mappings has not being found. Nevertheless, the formulation of the in-

verse mappings shown in Section 2.2 for the simplified model has been expanded. Starting from the Cartesian position 

and velocity vectors (Eqs. (3.2) – (3.3)), families of NKOs are derived as a function of the known NKO elements 

given by the simplified inverse mappings. 

All the families of solutions for 0 0t   are found by solving the following system of equations for the unknown 

NKO elements  , , ,, ,j tz     
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  (3.133) 

in which  0 0 0, ,
T

z    is the set of NKO elements in the simplified case. Eq. (3.133) has been solved via Mathematica 

function Reduce with the following hypotheses. 
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  (3.134) 

Two main groups of solutions have been found. These are shown in Eqs. (3.135) – (3.136).
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  (3.136) 

 

in which 
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  (3.137) 

Note that the terms 12 22 12 22, , ,C C D D  in Eq. (3.136) are never verified because both   and 0k  are always positive. Therefore, four separate families of solutions exist for 

the second group of solutions. For the same reason, the constraint 0 0k    shown within the solutions of the family D  does not add anything and can be safely removed. 
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The families of solutions of the second group (Eq. (3.136)) are analyzed separately in the following sub-

sections. 

3.2.1. Family 1 

The first family of solutions of the second group can be summarized by the following: 
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Note that all the elements depend on the value of the out-of-plane displacement z , which can be considered 

as a free parameter of the family. However, such element must satisfy the following constraints: 
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  (3.139) 

Note that the third constraint listed in Eq. (3.139) does not add anything to the previous two constraints and, 

therefore, it can be removed without any loss of generality. 

The solution related to the time t , shown at the end of Eq. (3.138), can be rewritten as 
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Using the true anomaly t   instead of the time t , it is easily shown that the parameter 1K  can be omitted 

without any loss of generality. Therefore, the first family of solutions of the second group can be rewritten, as a 

function of the out-of-plane displacement z , as 
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  (3.141) 

3.2.2. Family 2 

The second family of solutions of the second group can be summarized by the following: 

     

 

0

0 0 0

1

0 0 0

0 0 0 1

ta2

2 1

2

4

n

0

k

k

k

j k z z

t K



  



 

  








   


 



 

 

  

  (3.142) 

Note that, also in this case, all the elements depend on the value of the out-of-plane displacement z , which 

can be considered as a free parameter of the family. However, this element must satisfy the following constraints 

(in which only the first two constraints are shown, as discussed for the first family). 
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As discussed for the first family, the second family of solutions of the second group can be rewritten, as a function 

of the out-of-plane displacement z , as 
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Note that the solutions of the second family are characterized by 
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  (3.145) 

That is, the solutions of first and second families describe the same osculating Keplerian orbits, as it can be verified 

by substituting Eqs. (3.141), (3.144) into Eqs. (3.2) – (3.3). Considering the inclination  ,j    , the second 

family of solutions can be omitted without any loss of generality. 

3.2.3. Family 3 

The third family of solutions of the second group can be summarized by the following. 
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Note that, also in this case, all the elements depend on the value of the out-of-plane displacement z , which 

can be considered as a free parameter of the family. This, however, must satisfy the following constraints. 
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Note that the second constraint of Eq. (3.147) does not have any solution in  and, therefore, it can be safely 

removed without any loss of generality. 

As discussed for the first family, the third family of solutions of the second group can be rewritten, as a func-

tion of the out-of-plane displacement z , as 
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3.2.4. Family 4 

The fourth family of solutions of the second group can be summarized by the following. 
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Note that, also in this case, all the elements depend on the value of the out-of-plane displacement z , which 

can be considered as a free parameter of the family. This, however, must satisfy the following constraints (where 

only the first constraint is shown, as discussed for the third family). 

 
0z r   (3.150) 

As discussed for the first family, the fourth family of solutions of the second group can be rewritten, as a function 

of the out-of-plane displacement z , as 
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  (3.151) 

Note that the solutions of the fourth family are characterized by 
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That is, the solutions of third and fourth families describe the same osculating Keplerian orbits, as it can be verified 

by substituting Eqs. (3.148), (3.151) into Eqs. (3.2) – (3.3). Considering the inclination  ,j    , the fourth 

family of solutions can be omitted without any loss of generality. 

3.2.5. Discussion 

Summarizing, only two families of solutions of the second group exist and they are described, as a function of 

the out-of-plane displacement z , as 
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  (3.153) 

in which  ,j    . 
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However, it can also be demonstrated that the two remaining families of solutions describe, in fact, the same 

family. From Eq. (3.153), it can be noted that both orbital radius and RAAN are the same for the two families. 

Moreover, both orbital angular velocity and true anomaly of the third family are the opposite with respect to those 

of the first family. In order to have the same non-Keplerian orbits from both family 1 and 3, it must be 
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for any time t . The result of Eq. (3.154) is 
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Because the out-of-plane displacement z  is a free parameter, the first condition of Eq. (3.155) can be always 

true. If the second condition of Eq. (3.155) can be demonstrated to be true, the equivalence of the two families of 

solution shown in Eq. (3.153) is demonstrated as well. 

We wish to demonstrate that 
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From Eq. (3.153), it can be shown that 
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From the definition given in Eq. (3.157), it can again be shown that 
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2


     (3.160) 

Eq. (3.160) also demonstrates that the second condition of Eq. (3.155) is true and, therefore, the two families 

of solutions shown in Eq. (3.153) are, in fact, the same family. 

Because a positive orbital angular velocity is more intuitive than a negative one, the third family has been 

chosen to fully describe the solutions of the second group. 

The two groups of solutions, for 0 0t  , are described as follows. 
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Note that solution A  shown in Eq. (3.161) is, in fact, a particular case of the more general solution B . In 

particular, zero-inclination NKOs are characterized by  0,2   and    . Therefore, the general formula-

tion of the family of non-Keplerian orbits at 0 0t   is given by 
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3.2.6. Generalization for any time 

Equation (3.162) shows the family of solutions found for 0 0t  . However, a general expression for the family 

of NKOs is needed for any 0t . Because the NKOs taken into account are circular, it can be chosen to use the 

RAAN as a free element instead of time and leave the time as 0 0t  . The relation that links the time to the RAAN 

is 

 0 0 0t    (3.163) 

It has been noted that the RAAN is the only element that is directly related to the value of the RAAN of the 

known NKO. Therefore, the description of the family of NKOs for any time 0t  is given by 
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3.2.7. Summary 

Given the elements of an NKO characterized by the orbital plane parallel to the equator, the family of all 

possible circular NKOs that share the same instantaneous Cartesian state with the known NKO is given as follows. 
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in which 
2 2 2

0 0 0z zk    . In particular, zero-inclination NKOs are characterized by  0,2   and 

0    . 

3.2.8. Numerical test cases 

In order to test the solution found and shown in Eq. (3.165), a numerical test case is considered. The known 

zero-inclination NKO is a Type 1 NKO described by 
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Starting from the particular NKO shown in Eq. (3.166), the entire family of NKOs has been numerically in-

vestigated considering  0 02 ,2z z z   for two initial times 0t . For all the test cases shown, the Cartesian state is 

computed, by means of Eqs. (3.2) – (3.3), from the NKO elements found through Eq. (3.166). In all the test cases 

shown, the error in each element of the Cartesian position and velocity vectors is always less than 1210  km  and 
1610  km s

, respectively. 
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The characteristics of the first test case are shown in Eq. (3.167), whereas Figures 27 to 30 show the whole 

family of NKOs. 
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0
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  (3.167) 

 

 

Figure 27. Test case 1. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

 

Figure 28. Test case 1. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

X-Y view. 

 

Figure 29. Test case 1. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

X-Z view. 

 

Figure 30. Test case 1. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

Y-Z view. 

 

  

DISTRIBUTION A. Approved for public release: distribution unlimited.



Osculating Keplerian Elements for Highly Non-Keplerian Orbits – Final technical report 

A. Peloni, C. R. McInnes, M. Ceriotti Page 84 

 

The characteristics of the second test case are shown in Eq. (3.168), whereas Figures 31 – 32 show the whole 

family of NKOs. 
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Figure 31. Test case 2. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

 

Figure 32. Test case 2. Known NKO (black) and other 

NKOs, which are part of the family (red), are shown. 

X-Y view. 
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3.3. Impact of Noise 

The impact of noise on the NKO elements is now considered. This allows a determination if the NKO signa-

tures are still clear. The same scenarios used to study the signatures have been considered. However, only the 

Type 1 NKOs with a positive displacement are used for this part of the study. 

Three values for the noise have been considered in this study, consisting of upper/lower boundaries and a value 

inside this range. For the upper boundary, the maximum range error 24 mr   and range rate error 

0.16 m sr  , due to the instrumental errors, are considered.28 A second set of values for the noise is considered 

by dividing the upper boundary by a factor of 10. It will be seen that these values lie within the range defined by 

upper and lower boundaries. A lower boundary on the noise can be set by considering the errors in the orbit 

determination of the test cases. Because these errors are the result of filtering processes (i.e. a Keplerian orbit is 

assumed in the first place), these values are considered here as the lower boundary, as follows.29-33  

 3
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  (3.169) 

A Monte Carlo analysis has been carried out to obtain the maximum values of the errors on the Keplerian 

inclination i  and RAAN   from the aforementioned errors. 500 samples of Cartesian position and velocity 

vectors in a normal distribution have been considered with mean values corresponding to the nominal Cartesian 

states. The standard deviation considered for each component of the position vector is r , assuming the range 

error being equal to r . The standard deviation considered for each component of the velocity vector is v , 

assuming the range rate error being equal to v . Considering the conversion from Cartesian state to KEP, the 

errors given by the aforementioned values provide an estimate of i  and  . The three sets of errors consid-

ered here are, therefore, the following. 
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It is important to note that 180 deg  in the cases 1-2 related to GEO. This is due to the planar nature of 

GEO and, therefore, the fact that RAAN is arbitrarily set to zero. Even a small error can introduce a small incli-

nation and, therefore, a value of  0,2 . On the other hand, the value of the error on RAAN for case 3 is 

significantly lower because of the filtering. 

The errors  , ,i  r  are used to estimate the noise to be considered for the NKO elements. A Monte 

Carlo analysis has been carried out with 500 samples of NKO elements in a normal distribution. The mean values 

considered are the nominal values of NKO elements  0 0 0 0, , ,z j  , whereas the standard deviations are 

  0 0sin , 3 , ,z i   r r , respectively. The value of the angular velocity is simply given by 

3   , in which   is the NKO orbit radius with noise. 

Figures 33 and 34 show both GEO and Type 1 NKO in the presence of noise as from Eq. (3.170) for Cases 1 

and 2, respectively. Both figures have been generated using the Cartesian position vectors resulted from the oscu-

lating KEP obtained through the forward map from NKO elements with noise. The figures show that, by looking 

at their orbits, the Keplerian GEO and the NKO are clearly distinguishable for the value of noise related to Case 

2. On the contrary, the same is not true for the three-dimensional orbits of both the GPS and SSO cases. That is, 

in the GPS and SSO cases, one cannot understand if the orbit they are looking at is a Keplerian or a non-Keplerian 

one. 

Figure 35 shows a comparison between all the scenarios and noise levels taken into account in this study. The 

evolution of the out-of-plane MEE k  has been chosen for the comparison. From the plots, it can be seen that the 

first level of noise is too large to be able to distinguish Keplerian from non-Keplerian orbits. On the other hand, 

with the third level of noise, which has been considered as the lower bound, all the test cases show a clear division 

between the two types of orbits. If the second level of noise is considered, the signatures of a spacecraft being 

forced along a NKO are still clear in the GPS and SSO cases. In fact, the constant trend of k  that is peculiar of a 

Keplerian orbit is clearly opposed to the sinusoidal trend of k , which is characteristic of a NKO. On the contrary, 

the GEO case is still too noisy to be able to separate the two trends. This is due to the very large error on RAAN 

considered (Eq. (3.170)). 

 

 

Figure 33. Case 1. GEO and NKO with noise. 

 

Figure 34. Case 2. GEO and NKO with noise. 
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a) GEO. Noise level case 1. 

 
b) GEO. Noise level case 2. 

 
c) GEO. Noise level case 3. 

 
d) GPS. Noise level case 1. 

 
e) GPS. Noise level case 2. 

 
f) GPS. Noise level case 3. 

 
g) SSO. Noise level case 1. 

 
h) SSO. Noise level case 2. 

 
i) SSO. Noise level case 3. 

Figure 35. Evolution of k over one orbit. All mission scenarios and noise levels are shown. 

 

Lastly, it is interesting to study the thrust-induced acceleration needed to follow the osculating elements in the 

presence of noise. However, the formulation of the acceleration as a function of the osculating elements shown in 

Eqs. (2.152) – (2.157) has been derived for a reference frame so that viewed from an inertial frame of reference, 

such solutions correspond to circular orbits displaced above the central body.2 That is, the reference frame should 

be rotated following inclination and RAAN of the nominal Keplerian orbit before computing the magnitude of 

acceleration. Assuming a knowledge of the nominal Keplerian orbit, the reference frame can be rotated by the 

RAAN and inclination following the rotations    3 1 i R R . This is a good assumption since the data are 

noisy around the nominal value. Therefore, the values of RAAN and inclination can be considered as the mean 

values of the data available. This way, the rotated Cartesian state describes a noisy orbit with approximately zero 

inclination. Therefore, the analytical formulation of the acceleration given either osculating KEP or MEE shown 

in Eqs. (2.152) and (2.155) can be used to have a first-guess approximation of the magnitude of the acceleration 

needed to follow the observed NKO. Moreover, the value of the magnitude of acceleration can be a further indi-

cation of the use of a NKO. Figures 36 and 37 show the magnitudes of acceleration computed considering the 

second level of noise for the GEO and GPS cases, respectively. 
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Figure 36. Magnitude of acceleration over one orbit. 

GEO. Noise level case 2. 

 

Figure 37. Magnitude of acceleration over one orbit. 

GPS. Noise level case 2. 

 

In Table 10, the impact of noise on the mappings is summarized. Those signatures that, despite the noise, can 

provide a clear and reliable indication that a spacecraft is being forced along a non-Keplerian orbit are highlighted 

for each case study under consideration. 

 

Table 10.  Summary of impact of noise on the NKO signatures. 

 Signatures Issues 

GEO 

GEO and NKO are clearly defined from the fol-

lowing (Cases 2-3 only): 

 3D orbits 

 Osculating inclination 

 a  (simplified analytical approach) 

 Case 1 is too noisy 

 From  , ,  and all MEE, GEO and 

NKO are not clearly defined 

GPS 

SSO 

GPS/SSO and NKO are clearly defined from the 

following (Cases 2-3 only): 

 Elements  , , ,i h k  

 a  (simplified analytical approach) 

 Case 1 is too noisy 

 From  ,  , GPS/SSO and NKO are not 

clearly defined 

 The magnitude of the in-plane MEE is too 

small 

 GPS/SSO and NKO are not clearly defined 

from the 3D orbits 

 a can be used only if i  and   are known. 
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4. Conclusions 

This work has presented a mapping between highly non-Keplerian orbit (NKO) geometry and classical orbital 

elements for both the direct and inverse problem. Three sets of elements have been discussed and mappings have 

been derived in closed, analytical form. Two models have been considered for the NKOs: a simplified model, in 

which the NKO orbital plane is parallel to the equatorial one, and a generalized model, in which no assumptions 

are made. 

For the simplified model, it has been shown that the main drawback of using the classical Keplerian elements 

(KEP) is due to the piecewise formulation required for a forward mapping. A simpler formulation characterizes, 

instead, a forward mapping that uses the augmented integrals of motion. However, the main drawback of using 

this set of elements is the extreme sensitivity to uncertainties in eccentricity and true longitude that characterizes 

the inverse mapping. Lastly, the modified equinoctial elements (MEE) provide both a simple formulation and 

have low sensitivity to uncertainties in both forward and inverse mappings. 

For the generalized model, the forward map has been derived in closed, analytical form. It has been shown 

that both KEP and MEE are characterized by piecewise formulations. Three test cases have been chosen that show 

a broad range of applicability of the maps. Key characteristics of the signature have been highlighted which can 

provide a simple and reliable indication that a spacecraft is being forced along a non-Keplerian orbit. Moreover, 

starting from the Cartesian state of NKOs, with their orbital plane parallel to the equatorial plane, all the families 

of NKOs which have no assumption on their orbital plane have been derived in a closed, analytical form as a 

function of the out-of-plane displacement. 

Using the same test cases introduced for the study of the generalized forward maps, noise has been added to 

the initial NKO elements to assess the impact on estimates of the classical orbital elements. It has been demon-

strated that, despite the noise, signatures exist that can provide a clear and reliable indication that a spacecraft is 

being forced along an NKO. Lastly, it has been shown that a first-guess approximation of the magnitude of the 

acceleration needed to follow the observed NKO can be obtained. Both KEP and MEE have equal advantages and 

drawbacks in the case of the generalized forward map. Therefore, in order to clearly distinguish a Keplerian orbit 

from a NKO using their orbital elements, it is important to look at: a) three-dimensional orbit; b) osculating i  and 

 ; c) osculating out-of-plane MEE h  and k ; and d) magnitude of the thrust-induced acceleration. This can 

provide an initial understanding for future, detailed analysis of optimal estimation using statistical filtering.  
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